TKQML Users’ Manual

Version 7/16/97

Ian Soboroff, R. Scott Cost and Peter Finin

Laboratory for Advanced Information Technology

Department of Computer Science and Electrical Engineering

University of Maryland Baltimore County

CONTENTS

1CONTENTS

INTRODUCTION
2
FUNCTIONS PROVIDED
2
Building KQML Messages
2
Sending KQML Messages
3
Examining KQML Messages
4
Advanced Message Manipulation
4
Router Functions
5
Miscellaneous Functions
6
FUNCTIONS NOT PROVIDED
7
FUNCTIONS ADDED
7
MESSAGE HANDLING
8
AN EXAMPLE: MONA
8
SETTING UP
9
REFERENCES
10

INTRODUCTION

TKQML brings to the Tcl/Tk environment a C implementation of KQML, called KATS, which was developed jointly by Loral Corporation and the University of Maryland Baltimore County. This enables Tcl scripts and the programs using them to easily communicate with one another via a popular agent communication language.

 TKQML is an extension of the agent communication language KQML to the Tcl/Tk environment. As such, it must be used in conjunction with the KQML C implementation described in []. This document assumes general familiarity with KQML in general, and the specifics of the KATS implementation. For further reading on these topics, please see the references provided at the end of this document.

FUNCTIONS PROVIDED

Most functions provided by KATS (collectively referred to as the C-KRIL, or KQML Router Interface Library of the C implementation) are extended by TKQML. Because the Tcl language is significantly more restrictive with respect to types, TKQML employs an internal type/value conversion system. This allows it to provide many aspects expected in the C implementation, such as pointer values and multiple return values (via update to parameter-referenced objects). We therefore present the TKQML-style declarations below. For detailed descriptions of the functions, please refer to [1].

In the specifications, a lower case type name (e.g. int) denotes the string representation of a value of that type (e.g. “123”) . An upper case names denotes the name of a variable containing a value of the previous form. Do not use the convention of $<name> to specify “value-of” in a TKQML parameter.

A return type of void here indicates that no value is returned.

We will employ the following conventions for types:

int

String representation of an integer

String

String

pointer

String representation of a pointer (please don’t write your own!

ket

String denoting a KQML_EXPRESSION_TYPE

<name>*

pointer to an object of type <name>

<name>**

pointer to an object of type <name>*

Some functions provided by the KRIL (e.g. string comparison) are superfluous in the Tcl environment. These functions have been deprecated; their use is currently supported in TKQML, but they will not be documented and may be dropped in future implementations. Avoid using these functions if possible
.

void

kqml initialize
String application_name

Description: Initialize system and contact ANS.

Example:

void

kqml register (see below for ‘register’ equivalents)
Building KQML Messages

kqml_message*

kqml build_msg String perf String content String rec_agent String reply_tag ...
Description: Build a KQML message from the parameters specified, plus n(0 attribute/value pairs.

Example:

set msg [kqml build_msg tell “Hello, world.” Bob k5 :ontology k&r]

int

kqml put_performative kqml_message* message String performative

Description: Add a performative to a KQML message (replace if one exists).

Example:

set msg [kqml build_msg tell “Hello, world.” Bob k5 :ontology k&r]

kqml put_performative msg deny
int

kqml put_field String fieldname kqml_message* message String new_value int value_len
Description: Add an attribute of the given name to a KQML message (replace if present).

Example:

set msg [kqml build_msg tell “Hello, world.” Bob k5 :ontology k&r]

set lang KIF

kqml put_field :language msg lang [length $lang]

int

kqml put_embedded_msg String fieldname kqml_message* message kqml_message* embedded_msg
Description: Embed a KQML message as the content of another KQML message.

Example:

set msg1 [kqml build_msg tell “Hello, world.” Jill kmsg-114]

set msg2 [kqml build_msg tell “Hello, world.” Bob kmsg-115]

kqml put_embedded_msg :content msg1 msg2

The following example (Figure 1) demonstrates the use of the message building functions. It builds two messages, modifies the second and embeds it as a content field in the first. The use of variables versus direct text is generally interchangeable.

Sending KQML Messages

int

kqml send_msg int timeout_value String perf String content String rec_agent String reply_tag kqml_message** reply_msg ...
Description: Send a KQML message of the given parameters, plus n(0 attribute/value pairs. The timeout value specifies how long the router should wait for a response; 0 means no timeout. A reply message pointer may be given if the router is to block and wait for a return messages.

Example:

set reply [kqml build_msg tell any any any]

kqml send_msg 5 tell “Hello, world.” Bob kmsg-114 reply

%% This will block and wait for a return message, until timeout.

or:
kqml send_msg 0 tell “Hello, world.” Bob NULL NULL

%% This will return immediately.

int

kqml send int timeout_value kqml_message *message kqml_message** reply_msg

Description: Send a prepared KQML message. See send_msg.

Example:

set msg [kqml build_msg tell “Hello, world.” Bob kmsg-114]

kqml send 5 msg NULL

int

kqml deliver_msg String perf String content ...
(deprecated)

int
kqml deliver kqml_message* message kqml_message** reply_msg

(deprecated)

Examining KQML Messages

String

kqml get_performative kqml_message* message
Description: Get the performative from the specified message.

Example:

set perf [kqml get_performative msg]

String

kqml get_field String fieldname kqml_message* message INT value_len KET value_type
Description: Get the value of the named field from the specified message. The length and type of the field value will be set.

Example:

set val [kqml get_field sender msg len type]

int

kqml get_field_count kqml_message* message

Description: Return the number of fields in the specified KQML message.

Example:

set num [kqml get_field_count msg]

String

kqml get_ith_field int field_no kqml_message* message char **fieldname char **value INT value_len KET value_type

Description: Get the value of the ith field in the specified KQML message. See get_field.

Example:

set val [kqml get_ith_field 3 msg len type]

Advanced Message Manipulation

KQML_KMSG_LIST*

kqml build_kmsg_list KQML_KMSG_LIST **list kqml_message *msg
Description: Add KQML message msg to a message list; create new list if list is NULL.

Example:

set list [kqml build_kmsg_list list msg]

void

kqml free_kmsg_list KQML_KMSG_LIST* list

Description: Frees memory associated with all KQML messages in a message list.

Example:

kqml free_kmsg_list list

void

kqml print_kmsg_list FILE* stream KQML_KMSG_LIST* list

Description: Prints all KQML messages in a message list.

Example:

kqml print_kmsg_list list

void

kqml print_msg FILE* stream kqml_message* message

Description: Print a single KQML message.

Example:

kqml print_msg msg

String

kqml sprint_msg String buffer INT size kqml_message* message

Description: Print a single KQML message to a string buffer.

Example:

set len 0

set smsg [kqml sprint_msg len msg]

int

kqml parse_buffer String buffer int len INT processed_len kqml_message **message

Description: Parse a string into a KQML message structure.

Example:

set rval [kqml parse_buffer buffer len proc_len msg]

int

kqml parse_stream FILE* stream kqml_message **message

Description: Parse a stream into a KQML message structure.

Example:

set rval [kqml parse_stream stream msg]
int

kqml parse_fd int fd kqml_message **message

Description: Parse a message string read from a file descriptor.

Router Functions

int

kqml timings
Description: Return the value of the Router timer.

Example:

set etime [kqml timings]

void

kqml timings_start
Description: Start the Router timer.

Example:

kqml timings_start

void

kqml timings_stop

Description: Stop the Router timer.

Example:

kqml timings_stop

int

kqml logging
Description: Return the current logging status.

Example:

set am_i_logging [kqml logging]

void

kqml logging_start
Description: Enable message logging at the Router level.

Example:

kqml logging_start

void

kqml logging_stop

Description: Disable message logging at the Router level.

Example:

kqml logging_stop

Miscellaneous Functions

KQML_KMSG_LIST*

kqml wrapper krt reply_type void* reply

(deprecated)

void*

kqml unwrapper kqml_message* msg KRT reply_type
(deprecated)

int

kqml stricmp String string1 String string2
(deprecated)

int

kqml strincmp String string1 String string2 int len
(deprecated)

void

kqml critical_section_start
Description: Prevent the message handler from interrupting.

Example:

kqml critical_section_start

void

kqml critical_section_end

Description: Allow message handler to interrupt current processing.

Example:

kqml critical_section_end

FUNCTIONS NOT PROVIDED

Some C-KRIL functions were not extended to Tcl/Tk, for a variety of reasons. Handler related code is managed by the TKQML application, so the Tcl/Tk programmer has no use for handler-related functions and pointers. <name>v functions, which take string vectors of attributes and values, were considered to be unnecessary and redundant, as were digit counting functions. Finally, kqml_send_sql_query was omitted as a special case function.

int

(*ans_handler) char *agent_name char **lookup_ans_name char **protocol char **addr_info

void *

(*handler function) char *content kqml_message *msg KQML_REPLY_TYPE *reply_type
int

kqml_send_msgv int timeout_value char *perf char *content char *rec_agen char *reply_tag kqml_message **reply_msg char *keyword[] char *value[]
int

kqml_deliver_msgv char *perf char *content char *keyword[] char *value[]
kqml_message*

kqml_build_msgv char *perf char *content char *rec_agent char *reply_tag char *keyword[] char *value[]
int

kqml_digit_count long number
int

kqml_Udigit_count unsigned long number

int

kqml_digit_to_str long number char *string
int

kqml_Udigit_to_str unsigned long number char *string
struct db_info*

kqml_send_sql_query char *perf char *sql_query char *rec_agent int blocking ...
FUNCTIONS ADDED

void

register_script String performative String script

Description: Register a script for use in handling messages of a certain performative.

void

register String performative String script-file-name

Description: As register-script, but the script is given in the specified file.

These functions, which are for registering message handlers, are described in more detail below.

void*

deref void** object

Some C-KRIL routines require a pointer to a pointer to an object, which usually means a reference to a pointer, which will be changed in the function. A difficulty arises in TKQML, in that since pointers are a foreign construct to Tcl, there is no native way to dereference a pointer (even if Tcl knew about TKQML pointers!). deref will take a pointer to a pointer to an object (represented by a lower-case ‘o’ followed by the address), and return the referenced pointer (prefixed by a ‘p’).

For example, in the following code:

set buf “(tell :receiver bob :content \”hello world\”)”

set buflen [string length buf]

set plen 0

set pkmsg NULL

set result [kqml parse_buffer buf $buflen plen pkmsg]

parse_buffer returns a pointer-to-a-pointer-to-a KQML message in pkmsg. We can use this message with the deref command:

kqml print_msg stdout [kqml deref pkmsg]

kqml send 0 [kqml deref pkmsg] NULL

MESSAGE HANDLING

As with the C-KRIL, incoming messages are serviced by code designated in advance to handle that type of message. This is much more flexible in TKQML, however, since the message handlers are, like the agent code, Tcl scripts. register_script allows the user to register a Tcl script as a string, to be called when messages of a given performative are received. For example:

kqml register_script tell { \

global kqml_msg; \

puts stderr “TELL message received”; \

kqml print_msg stdout kqml_msg; }

register allows the user to specify the filename of a script to be run when messages of the given performative are received. This is exactly like register_script, but instead of an actual script, a filename is given. For example:

kqml register tell “tell-handler.tcl”

Where the file ‘tell_handler.tcl’ contains the same script code listed above. This form is useful when handlers are large, or when handlers are shared among scripts.

With both register and register_script, the script or filename can be changed at any time, including within a message handler, by using either command with the performative for the handler you want to change.

Handler scripts may be removed dynamically by registering a null script in their place.

When writing a handler script, the incoming message can be found in a global variable called kqml_msg, and that any message left in the global variable reply_msg will be sent out when the script exits. If a reply is to be sent automatically, the global variable kqml_reply_type should be set appropriately.

AN EXAMPLE: MONA

MonA set myName “MonA-[lindex $argv 0]”

Agent name specified on command line
kqml initialize myName

Initialize agent, register with ANS
set value 0

 Initialize monitored value to 0 (not important to example)
set subscribers ““

Initialize subscribers list to empty
kqml register-script subscribe {
Register this script to handle subscribe messages
 set new [kqml get_field :sender kqml_msg]Get sender name (kqml_msg contains message)
 if {[lsearch $subscribers $new] == -1} {

If new, …
 set subscribers [linsert $subscribers 0 $new]
Add name to subscriber list
 }

}

kqml register-script unsubscribe {
Register this script to handle unsubscribe messages
 set name [kqml get_field :sender kqml_msg]

Get name of sender
 set idx [lsearch $subscribers $name]

Locate name in list of subscribers
 if {$idx >= 0} {

If present, …
 set subscribers [lreplace $subscribers $idx $idx]

Remove name from list
 }

}

while {1} {

While true, …
 set old_value $value

Set old_value to the previous value
 set value [toolkit prob_1]Probe for new value (details not important to example)
 if {$old_value != $value} {

If the value in question has changed, …
 foreach sub $subscribers {

For each name on the subscriber list, …
 kqml send_msg 0 tell value sub NULLSend a message reporting the new value
 }

 }

after 1000

Wait for some period, then continue
}
SETTING UP

In order to use TKQML with your Tcl application, you must link it with your existing shell. This is a simple matter of performing the following steps:

1. Obtain and install the TKQML distribution. This can be downloaded from http://kqml.org/tkqml/. There are two files that you will need:

kqml-2.5-core.tar.gz

The most recent core KQML installation.

kqml-2.5-xtra.tar.gz

Extensions to Lisp, Tcl, Prolog and miscellaneous treats.

2. Follow the instructions for installation which accompany the distribution. The file README in the toplevel directory describes the installation process. The file README.ARCH details the structure of the ARCH subtree, which separates platform specific files. In particular, you will need to:

A. Choose a directory in which to install KQML.

B. Copy the two distribution files above to this directory.

C. gunzip kqml-2.5-*.tar.gz

D. tar –xvf kqml-2.5-core.tar

E. tar –xvf kqml-2.5-xtra.tar

F. Modify path variable to match your site (see ./kqml/README).

3. If you are using an operating system/hardware platform supported by the distribution
, you are ready to go (skip to the next step). Otherwise, you will need to create another directory under ARCH, and modify the makefiles and/or patch the code to compile in your environment (see ./kqml/README and ./kqml/README.ARCH). We will expand our coverage of systems as we learn from new installation experiences, so…

PLEASE SEND US YOUR CHANGES AND NOTES!!

4. The makefiles supplied with the distribution are setup to create two result files. The first is a TKQML library file, which can be used to build TKQML into other applications. This is called libtkqml.a, and is located in ./kqml/ARCH/<your-platform>/lib/. The second is a TKQML enabled shell. This is not only a useful shell (you can use it to run your agent scripts), but serves as an example of how to integrate the TKQML library with a shell. Find this file, called TKsh, in ./kqml/ARCH/<your_platform>/bin/.

REFERENCES

[1]
Unisys Corporation. SOFTWARE USER’S MANUAL FOR KQML (Knowledge Query and Manipulation Language)

. 1995.

[2]
SOFTWARE DESIGN DOCUMENT FOR KQML (Knowledge Query and Manipulation Language). 199x.

[3]
KQML-PROLOG

[4]
Tim Finin, Yannis Labrou, and James Mayfield. KQML as an agent communication language. In Jeff Bradshaw (Ed.), Software Agents, MIT Press, Cambridge, to appear, (1997).

[5]
Yannis Labrou. Semantics for an Agent Communication Language. Ph.D. thesis, University of Maryland Baltimore County, August 1996.

puts perf tell	

puts content “Hello, world.”

puts receiver Jill

puts msg_id kmsg-114

kqml puts msg1 [kqml build_msg perf content receiver msg_id]

kqml puts msg2 [kqml build_msg perf content Bob kmsg-115]

kqml put_performative deny msg1

puts lang english

kqml put_field language msg lang [length $lang]

kqml put_embedded_msg content msg1 msg2	

Figure � SEQ Figure * ARABIC �1�: Message Building Example

� If for some reason you feel that a function has been incorrectly deprecated, or that you rely on it in your application, please let us know, so that we can take it into consideration for future implementations.

� For all examples in this section, we assume that a variable named ‘msg’ contains a reference to a valid KQML message.

� Comments in italics.

� Currently Irix 5.3 and Solaris 2.5.

� This is the manual for the KATS implementation.

� There is an incomplete version of this document in circulation which appears complete and which is frequently mistaken for the final version. Please be sure that the manual you are using is roughly 23 pages long.

�PAGE \# "'Page: '#'�'" ��Example to be inserted.

11
10

