CMSC 421 0101 Midterm – 3/13/02
Closed book, closed notes – Nothing but a few sheets of blank paper on your desk!

*** Note: There is 110 points possible out of 100 (i.e. you can get 110%) ***

1.
(4 pts) With modern operating systems, like UNIX, why must processes use the appropriate system calls to share memory between processes instead of simply directly accessing another’s memory?
A: Modern operating systems provide memory protection to prevent one process from corrupting another. This memory protection will prevent a process from directly modifying another’s memory without trapping to the operating system in error. The OS calls to share memory provide a pointer that can be used by multiple processes to share memory.
2.
Virtual Machines

a) (3 pts) What does the interface a VM presents to an OS running on top of it look like?
A: The interface is identical to the underlying hardware.

b) (5 pts) Give two reasons one might use a VM

A: Safe code development / analysis; multiple operating systems running concurrently; …

c) (3 pts) Give one reason why not to use a VM.

A: There is a performance impact.
3.
Give one example of what can cause a process to terminate under the following conditions:

a) (2 pts) Internally by design
A: exit();
b) (2 pts) Internally by error
A: invalid memory reference, jumping to an invalid address…
c) (2 pts) Externally
A: kill -9 pid
4.
State whether the producer and/or consumer may block using the following types of queues:
a) (2 pts) 0 capacity
A: Both
b) (2 pts) Bounded capacity
A: Both
c) (2 pts) Unbounded capacity
A: Consumer
5.
(4 pts) Other than the registers, list one other thing the kernel maintains for each thread.

A: stack or file system info…
6.
(5 pts) List two reasons one might use multithreading.

A: Faster response time, take advantage of multiple CPU’s, cleaner implementation of separate tasks.
7.
(3 pts) What do most operating systems (including UNIX) do about the deadlock problem?

A: Nothing
8. Priority Inversion

a) (4 pts) Given a low, medium, and high priority task, describe a situation that can cause a priority inversion problem.

A: Low priority task runs, and takes a shared resource(High priority task becomes available and runs (preempting the lower priority task), while executing, it requests the shared resource in use by the low priority task(Medium priority task becomes available while the high priority task ran, so it runs when the high priority task blocks(The medium priority task can run indefinitely, causing the low priority task not to run, and subsequently, causing the blocked high priority to wait(The medium priority task is able to run in favor of the higher priority task for an unbounded period of time.
b) (5 pts) Describe one technique for solving this problem.

A: When a task holds a resource that causes a higher priority task to block, the lower priority task is elevated to the same priority as the higher priority blocked task.
9. Consider the following code to implement a shared 5 element bounded buffer: full=0, empty=5:
Producer

do {

…

produce an item in nextp

…

wait(empty);

…

add nextp to buffer

…

signal(full);

} while (1);

Consumer

do {

…

wait(full);

…

remove an item from buffer to nextc
…

signal(empty)

…

consume the next item in nextc
…

} while(1);

a) (4 pts) Describe the synchronization problem with this implementation.
A: The buffer is not protected with a mutex semaphore – both the producer and consumer can write into it at the same time, which can cause inconsistencies with the buffer data & the pointers that manage the buffer.
a) (8 pts) Show how to fix this code

A: Add a mutex semaphore – wait(mutex) before the buffer access and signal(mutex) after the buffer access for both the producer and consumer.
10.
Consider the resource graph below:

a)
(5 pts) Does the following graph have a deadlock?
A: Yes, the cycle p1(r1(p2(r2(p3(r3(p1 causes a deadlock.

b)
(5 pts) If so, show a single edge that can be removed to eliminate the deadlock, and if not, show a single edge that can be added to cause a deadlock.
A: Removing any of the arrows in the cycle above will remove the deadlock

[image: image1]
11.
Consider the following: two processes each access a shared variable c possibly at the same time. c is initialized to 7, process 1 decrements c (e.g. c--;), and process 2 increments c (e.g. c++).

a) (5 pts) List all of the possible resulting values for c after process 1 and process 2 have finished.
A: 6, 7, or 8
b) (9 pts) Using a single register, show how an incorrect value of c can occur.
A:
P1: load c into register R1 (R1 = 7) [Context switch occurs]

P2: load c into register R1 (R1 = 7), Increment R1 (R1 = 8), store c (c = 8)

P1: Decrement R1 (R1 = 6), store c (c = 6) (final result is c=6.
NOTE: A second context switch could occur before P2 stores c=8, allowing P1 to finish first. When P2 completes, it will store c=8, (final result is c=8.

12.
For the table below, draw the Gant chart AND calculate the average waiting time for the following scheduling algorithms:

a) (8 pts)
FCFS

b) (10 pts)
SJF - Preemptive

	Process
	Arrival Time
	Burst Time

	P1
	0.0
	10

	P2
	3.0
	3

	P3
	5.0
	9

	P4
	7.0
	4

A: FCFS:
[image: image2]
Average Waiting Time = [0 + (10-3) + (13-5) – (22-7)]/4 = 30/4 = 7.5

 SJF:

[image: image3]
Average Waiting Time = [(3+4) + 0 + (17-5) + 0]/4 = 19/4 = 4.75
13. (8 pts) When mixing CPU bound and IO bound processes, a common technique is to give a higher priority to the IO bound processes because they typically run for only a short period of time before moving to the waiting queue. Consider the opposite approach where a higher priority is given to CPU bound processes. Describe how and why this would effect CPU utilization. Hint: Don’t consider context switch time as time the CPU is being utilized.
A: This approach will cause the CPU bound processes to run more often. These processes tend to user their entire quantum executing before being switched out by the clock interrupt driven scheduler. This will cause the CPU to spend more time executing (higher utilization), as the time between wasted context switch time is maximized.
p3

p2

p1

r3

r2

r4

r1

26

22

13

10

0

P1 P2 P3 P4

11

7

26

17

6

3

0

P1 P2 P1 P4 P1 P3

