Sources: John Gasper, Principles of Game Theory; Pedro Domingos, Decision Theory; Randall Munroe, XKCD; Wikipedia, various

Decision Making in Technology

A painfully brief intro to game theory, decision theory, utility and preferences, and equilibria

RJ10, 3D Printing: Sunday Paper Topic: Tuesday

Bookkeeping

- Paper and paper topic
 - Paper topic: November 4th (Tuesday) at midnight
 - Topic; primary ethical concern or sub-area; proposed title
 - Paper due: last day of class
 - There will be some in-between steps posted Tuesday
 - You MAY work with ONE partner
 - Shared presentation
 - Recommend 50% longer paper (6 instead of 4)
 - Written statements about what each person did
- ◆ Last ~3 class periods: presentations
- Participation Portfolio 2 will be due Nov 8th

Bookkeeping

Midterms

3

◆ Don't be alarmed by essay grades – always curved

- Essay grading: there's always something to improve
- Specific concerns? 1-week window
 - Please do come ask questions or object!
- Ethical Analysis 2 will be posted Monday
 - Due Nov. 17th two weeks later

How Do Agents Make Decisions?

• What agents?

- People: "You"; "Everyone else"
- Computer systems (real-time and not)
- Artificial intelligences (many kinds)

When Do Computers Make Decisions?

- At every fork in a search problem
- Every time a credit card is run
- Every time a prescription is filled
- …a book is recommended
- …a dossier is flagged
- …a command is interpreted
- And so on.

Terminology and Concepts

- Optimizing: obtaining best possible outcome
 - Maximizing the value of some objective function
- Objective Function
 - A mathematical expression whose output you want to maximize/minimize
 - Optimization is finding the right input parameters
- Multi-objective optimization
 - Finding the best possible parameters given *multiple* objective functions

Terminology and Concepts

Expected Value

- The predicted value of a variable, calculated as:
- The sum of all possible values, each multiplied by the probability of its occurrence

A \$1000 bet for a 20% chance to win \$10,000 [20%(\$10,000)+80%(\$0)] = \$2000

- Satisficing: achieving a goal sufficiently
 - You can win a baseball game by one point now, or by two points in another inning
 - You can have a search function that finishes in one second, or spend another 2 hours to make it half a second; full credit is 3 seconds or less

Terminology and Concepts

Game Theory

- Mathematical models of interaction
- Between intelligent, rational decision-makers
- Decision Theory
 - Normative: how *should* agents make decisions?
 - Descriptive: how *do* agents make decisions?
- Utility and utility functions
 - Something's perceived ability to satisfy needs or wants
 - A mathematical function that ranks alternatives by utility

What is Game Theory?

- Study of rational behavior in interactive situations
 - Everyone is self-interested and selfish
 - Or at least rational (weaker than selfish)
- Problems:

- We aren't "rational" (agents can be)
- Knowing theory doesn't guarantee success
- Goal: optimize chances of success
 - Achieving some target state
 - Optimizing some value

More Terminology

Rationality (an overloaded word).

- ♦ A rational agent...
 - Behaves according to a *ranking over possible outcomes* that is:
 - Complete (covers all situations) and consistent
 - Optimizes over strategies to best serve a desired interest
- Has logical implications of knowledge
 - Assume that players have logical omniscience
 - If player 1 knows A, then 1 knows all of the logical implications of A
 - Assume players know all possible implications
 - If 2 knows that 1 knows that 2 knows that ...

Classifying games

- I. Sequential or simultaneous move?
 - Does a player get to change actions based on others' behavior? Tic-tac-toe ; rock paper scissors
- 2. Zero-sum?
 - Gain or loss is exactly balanced by opponent's gain or less
 Chess ; tic-tac-toe ; soccer
- 3. One shot or repeated?
 - Either one is not necessarily easier or harder
 - Opportunity to build *reputation* (for good or bad)

Classifying games

- 4. Full, partial, or asymmetric information?
 - Perfect information:
 - Each player has information of all previous events chess ; battleship
 - Complete information:
 - Every player knows payoffs for all possible actions tic-tac-toe ; Prisoner's Dilemma ; car buying
- 5. Non-cooperative or cooperative?
 - Are agreements enforceable?

Prisoner's Dilemma

- One-shot or repeated?
 - Actually, either.
- Simultaneous?
- Zero-sum?
- Any uncertainty?
- Fixed rules?
- Cooperative?

Elements of a Game

Conceptual elements:

- I. Actions and Strategies
 - Actions: the available actions any singular point
 - Strategy: complete plan for deciding actions
 - Different from "tactics and strategies"
- 2. Payoffs
 - An objective isn't necessarily "winning"!
 - See: non-zero-sum games; car buying
 - Represent preferences with a payoff function
 - Can be monetary but will be represented by *utility*

What is Decision Theory?

- Mathematical study of strategies for optimal decision-making
 - Options involve different risks or expectations of gain or loss
- The study of identifying:

- The values, uncertainties and other issues relevant to a decision
- The resulting optimal decision
- What does decision mean?

Utility

- Utility: perceived ability to satisfy needs or wants
- Utility function: Mathematical f that ranks alternatives
- Marginal utility: utility of subsequent iterations of thing
- Total utility: Utility of consuming ALLTHETHINGS

Preferences

- An agent chooses among:
 - Prizes (A, B, etc.)
 - Lotteries (situations with uncertain prizes and probabilities)

- ♦ A > B
- A ~ B
- ♦ A >~ B

- A preferred to B
- Indifference between A and B
- B not preferred to A

Rational Preferences

- Preferences of a rational agent must obey constraints
 - Transitivity

- Monotonicity
- Orderability $(A > B) \vee (B > A) \vee (A \sim B)$
- Substitutability $(A \sim B \Rightarrow [p,A; I-p,C] \sim [p,B; I-p,C])$
- Continuity (A>B>C \Rightarrow $\exists p [p,A; I-p,C]~B$)
- Rational preferences, when followed, give behavior that maximizes expected utility.
- Violating the constraints leads to irrationality
 - For example: an agent with intransitive preferences can be induced to give away all its money.

Maximizing Expected Utility

Utilities map states to real numbers. Which numbers?
People are very bad at mapping their own preferences

- Standard approach to assessment of human utilities:
 - Compare a state A to a standard lottery Lp that has "best possible prize" u^T with probability p "worst possible catastrophe" u ⊥ with probability (I-p)
 adjust lottery probability p until A ~ Lp

Money

20

- Money does not behave as a utility function
 - That is, people don't maximize expected value of *dollar assets*.
- People are risk-averse:
 - Given a lottery L with expected monetary value EMV(L), usually U(L) < U(EMV (L))

Want to bet \$1000 for a 20% chance to win \$10,000? [20%(\$10,000)+80%(\$0)] = \$2000 > [100%(\$1000)]

- Expected Utility Hypothesis
 - rational behavior maximizes the expectation of some function u, which in need not be monetary

Actual Utility Scales

- Micromorts: one-millionth chance of death
 - Useful for:
 - Russian roulette
 - Paying to reduce product risks, etc.
- QALYs: quality-adjusted life years
 - Useful for:
 - Medical decisions involving substantial risk

Equilibria

22

Nash Equilibrium: a state where no party has an incentive to unilaterally change strategies

 PI and P2 have both always testified.

- Who has incentive to be silent next round?
- Are there other equilibria?
- What game element would make it possible to change?

More Terminology

Multi-objective optimization

- Finding the best possible parameters given *multiple* objective functions
- Decisions need to be optimized given trade-offs between two or more conflicting objectives
 - Minimizing cost and maximizing comfort while buying a car
- Pareto-optimal: no function can improve without another one degrading
 - It's impossible to make anyone better off without making someone worse off

When Do We Care?

24

Deciding Whether to Approve a CC Transaction

	Approve	Don't Approve
Fraudulent	Gain: None Cost: Lost value of transaction	Gain: Customer trust Cost: Minor customer inconvenience; reissuing fee
Not fraudulent	Gain: Improved customer trust; transaction fee Cost: None	Gain: None Cost: Major customer inconvenience; loss of trust; reissuing fee

When Do We Care?

Recommend a Book

	They buy it	They don't
Show a few good options	Gain: \$\$ Cost: Calculating options; possible minimal annoyance	Gain: None Cost: Minimal annoyance
Show a whole bunch of options	Gain: \$\$ Cost: Calculating options; they may or may not be substantially annoyed	Gain: None Cost: Potentially substantial annoyance