Decision Making in Technology

A painfully brief intro to game theory, decision theory, utility and preferences, and equilibria

RJIO, 3D Printing: Sunday Paper Topic:Tuesday

Bookkeeping

- Paper and paper topic
- Paper topic: November $4^{\text {th }}$ (Tuesday) at midnight
- Topic; primary ethical concern or sub-area; proposed title
- Paper due: last day of class
- There will be some in-between steps posted Tuesday
- You MAY work with ONE partner
- Shared presentation
- Recommend 50\% longer paper (6 instead of 4)
- Written statements about what each person did
- Last ~3 class periods: presentations
- Participation Portfolio 2 will be due Nov $8^{\text {th }}$

Bookkeeping

- Midterms
- Don't be alarmed by essay grades - always curved
- Essay grading: there's always something to improve
- Specific concerns? 1-week window
- Please do come ask questions or object!
- Ethical Analysis 2 will be posted Monday
- Due Nov. I7th - two weeks later

How Do Agents Make Decisions?

- What agents?
- People:"You" ; "Everyone else"
- Computer systems (real-time and not)
- Artificial intelligences (many kinds)

When Do Computers Make Decisions?

- At every fork in a search problem
- Every time a credit card is run
- Every time a prescription is filled
- ...a book is recommended
- ...a dossier is flagged
- ... a command is interpreted
- And so on.

Terminology and Concepts

- Optimizing: obtaining best possible outcome
- Maximizing the value of some objective function
- Objective Function
- A mathematical expression whose output you want to maximize/minimize
- Optimization is finding the right input parameters
- Multi-objective optimization
- Finding the best possible parameters given multiple objective functions

Terminology and Concepts

- Expected Value
- The predicted value of a variable, calculated as:
- The sum of all possible values, each multiplied by the probability of its occurrence

A $\$ 1000$ bet for a 20% chance to win $\$ 10,000$

$$
[20 \%(\$ 10,000)+80 \%(\$ 0)]=\$ 2000
$$

- Satisficing: achieving a goal sufficiently
- You can win a baseball game by one point now, or by two points in another inning
- You can have a search function that finishes in one second, or spend another 2 hours to make it half a second; full credit is 3 seconds or less

Terminology and Concepts

- Game Theory
- Mathematical models of interaction
- Between intelligent, rational decision-makers
- Decision Theory
- Normative: how should agents make decisions?
- Descriptive: how do agents make decisions?
- Utility and utility functions
- Something's perceived ability to satisfy needs or wants
- A mathematical function that ranks alternatives by utility

What is Game Theory?

- Study of rational behavior in interactive situations
- Everyone is self-interested and selfish
- Or at least rational (weaker than selfish)
- Problems:
- We aren't "rational" (agents can be)
- Knowing theory doesn't guarantee success
- Goal: optimize chances of success
- Achieving some target state
- Optimizing some value

More Terminology

- Rationality (an overloaded word).
- A rational agent...
- Behaves according to a ranking over possible outcomes that is:
- Complete (covers all situations) and consistent
- Optimizes over strategies to best serve a desired interest
- Has logical implications of knowledge
- Assume that players have logical omniscience
- If player 1 knows A, then 1 knows all of the logical implications of A
- Assume players know all possible implications
- If 2 knows that 1 knows that 2 knows that ...

Classifying games

1. Sequential or simultaneous move?

- Does a player get to change actions based on others' behavior? Tic-tac-toe ; rock paper scissors

2. Zero-sum?

- Gain or loss is exactly balanced by opponent's gain or less

Chess ; tic-tac-toe ; soccer
3. One shot or repeated?

- Either one is not necessarily easier or harder
- Opportunity to build reputation (for good or bad)

Classifying games

4. Full, partial, or asymmetric information?

- Perfect information:
- Each player has information of all previous events chess ; battleship
- Complete information:
- Every player knows payoffs for all possible actions tic-tac-toe ; Prisoner's Dilemma ; car buying

5. Non-cooperative or cooperative?

- Are agreements enforceable?

Prisoner's Dilemma

13

- One-shot or repeated?
- Actually, either.
- Simultaneous?
- Zero-sum?
- Any uncertainty?
- Fixed rules?
- Cooperative?

Elements of a Game

Conceptual elements:
I. Actions and Strategies

- Actions: the available actions any singular point
- Strategy: complete plan for deciding actions
- Different from "tactics and strategies"

2. Payoffs

- An objective isn't necessarily "winning'!
- See: non-zero-sum games; car buying
- Represent preferences with a payoff function
- Can be monetary but will be represented by utility

What is Decision Theory?

- Mathematical study of strategies for optimal decision-making
- Options involve different risks or expectations of gain or loss
- The study of identifying:
- The values, uncertainties and other issues relevant to a decision
- The resulting optimal decision
-What does decision mean?

Utility

- Utility: perceived ability to satisfy needs or wants
- Utility function: Mathematical f that ranks alternatives
- Marginal utility: utility of subsequent iterations of thing
- Total utility: Utility of consuming ALLTHE THINGS

Preferences

- An agent chooses among:
- Prizes (A, B, etc.)
- Lotteries (situations with uncertain prizes and probabilities)

- Notation:
- $A>B$

A preferred to B

- $A \sim B$

Indifference between A and B

- $A>\sim B$
B not preferred to A

Rational Preferences

- Preferences of a rational agent must obey constraints
- Transitivity
- Monotonicity
- Orderability $(A>B) \vee(B>A) \vee(A \sim B)$
- Substitutability ($A \sim B \Rightarrow[p, A ; I-p, C] \sim[p, B ; I-p, C])$
- Continuity ($A>B>C \Rightarrow \exists p[p, A ; I-p, C] \sim B$)
- Rational preferences, when followed, give behavior that maximizes expected utility.
- Violating the constraints leads to irrationality
- For example: an agent with intransitive preferences can be induced to give away all its money.

Maximizing Expected Utility

- Utilities map states to real numbers.Which numbers?
- People are very bad at mapping their own preferences
- Standard approach to assessment of human utilities:
- Compare a state A to a standard lottery Lp that has
"best possible prize" $u T$ with probability p
"worst possible catastrophe" $u \perp$ with probability ($I-p$)
- adjust lottery probability p until $A \sim L p$

Money

- Money does not behave as a utility function
- That is, people don't maximize expected value of dollar assets.
- People are risk-averse:
- Given a lottery L with expected monetary value EMV(L), usually $\cup(\mathrm{L})<\mathrm{U}(\mathrm{EMV}(\mathrm{L}))$

$$
\begin{aligned}
& \text { Want to bet } \$ 1000 \text { for a } 20 \% \text { chance to win } \$ 10,000 ? \\
& {[20 \%(\$ 10,000)+80 \%(\$ 0)]=\$ 2000>[100 \%(\$ 1000)]}
\end{aligned}
$$

- Expected Utility Hypothesis
- rational behavior maximizes the expectation of some function u, which in need not be monetary

Actual Utility Scales

- Micromorts: one-millionth chance of death
- Useful for:
- Russian roulette
- Paying to reduce product risks, etc.
- QALYs: quality-adjusted life years
- Useful for:
- Medical decisions involving substantial risk

Equilibria

- Nash Equilibrium: a state where no party has an incentive to unilaterally change strategies

- PI and P2 have both always testified.
- Who has incentive to be silent next round?
- Are there other equilibria?
- What game element would make it possible to change?

More Terminology

- Multi-objective optimization
- Finding the best possible parameters given multiple objective functions
- Decisions need to be optimized given trade-offs between two or more conflicting objectives
- Minimizing cost and maximizing comfort while buying a car
- Pareto-optimal: no function can improve without another one degrading
- It's impossible to make anyone better off without making someone worse off

When Do We Care?

- Deciding Whether to Approve a CCTransaction

	Approve	Don't Approve
Fraudulent	Gain: None Cost: Lost value of transaction	Gain: Customer trust Cost: Minor customer inconvenience; reissuing fee
Not	Gain: Improved fraudulent transaction fee Cost: None	Gain: None Cost: Major customer inconvenience; loss of trust; reissuing fee

When Do We Care?

- Recommend a Book

	They buy it	They don't
Show a few good options	Gain: \$\$ Cost: Calculating options; possible minimal annoyance	Gain: None Cost: Minimal annoyance
Show a whole bunch of options	Gain: \$\$ Cost: Calculating options; they may or may not be substantially annoyed	Gain: None substantial Potentially annoyance

