Probability and Uncertainty 2: Probabilistic Reasoning

Review of concepts from last lecture

Making rational decisions when faced with uncertainty:

- Probability the precise representation of knowledge and uncertainty
- Probability theory how to optimally update your knowledge based on new information
- Decision theory: probability theory + utility theory how to use this information to achieve maximum expected utility

Basic concepts

- random variables
- probability distributions (discrete) and probability densities (continuous)
- rules of probability
- expectation and the computation of Ist and 2nd moments
- joint and multivariate probability distributions and densities
- covariance and principal components

Simple example: medical test results

- Test report for rare disease is positive, 90% accurate
- What's the probability that you have the disease?
- What if the test is repeated?
- This is the simplest example of reasoning by combining sources of information.

How do we model the problem?

- Which is the correct description of "Test is 90% accurate" ?

$$
\begin{aligned}
P(T=\text { true }) & =0.9 \\
P(T=\operatorname{true} \mid D=\text { true }) & =0.9 \\
P(D=\operatorname{true} \mid T=\text { true }) & =0.9
\end{aligned}
$$

- What do we want to know?

$$
\begin{gathered}
P(T=\operatorname{true}) \\
P(T=\operatorname{true} \mid D=\text { true }) \\
P(D=\operatorname{true} \mid T=\text { true })
\end{gathered}
$$

- More compact notation:

$$
\begin{aligned}
P(T=\text { true } \mid D=\text { true }) & \rightarrow P(T \mid D) \\
P(T=\text { false } \mid D=\text { false }) & \rightarrow P(\bar{T} \mid \bar{D})
\end{aligned}
$$

Evaluating the posterior probability through Bayesian inference

- We want $\mathrm{P}(\mathrm{D} \mid \mathrm{T})=$ "The probability of the having the disease given a positive test"
- Use Bayes rule to relate it to what we know: $\mathrm{P}(\mathrm{T} \mid \mathrm{D})$

$$
\text { posterior } P(D \mid T)=\frac{\begin{array}{c}
\text { likelihood prior } \\
P(T \mid D) P(D) \\
\text { normalizing } \\
\text { constant }
\end{array}}{\qquad(T)}
$$

- What's the prior $\mathrm{P}(\mathrm{D})$?
- Disease is rare, so let's assume

$$
P(D)=0.001
$$

- What about $\mathrm{P}(\mathrm{T})$?
- What's the interpretation of that?
$\stackrel{\text { Al: Probabilistic Inference } 2}{ } \quad 5 \quad$ Michael S. Lewicki \diamond Carnegie Mellon

Evaluating the normalizing constant

> likelihood prior
> posterior $P(D \mid T)=\frac{P(T \mid D) P(D)}{P(T)}$
> normalizing
> constant

- $P(T)$ is the marginal probability of $P(T, D)=P(T \mid D) P(D)$
- So, compute with summation

$$
P(T)=\sum_{\text {all values of } \mathrm{D}} P(T \mid D) P(D)
$$

- For true or false propositions:

$$
P(T)=P(T \mid D) P(D)+P(T \mid \bar{D}) P(\bar{D})
$$

Refining our model of the test

- We also have to consider the negative case to incorporate all information:

$$
\begin{aligned}
& P(T \mid D)=0.9 \\
& P(T \mid \bar{D})=?
\end{aligned}
$$

- What should it be?
- What about $P(\bar{D})$?

Plugging in the numbers

- Our complete expression is

$$
P(D \mid T)=\frac{P(T \mid D) P(D)}{P(T \mid D) P(D)+P(T \mid \bar{D}) P(\bar{D})}
$$

- Plugging in the numbers we get:

$$
P(D \mid T)=\frac{0.9 \times 0.001}{0.9 \times 0.001+0.1 \times 0.999}=0.0089
$$

- Does this make intuitive sense?

Same problem different situation

- Suppose we have a test to determine if you won the lottery.
- It's 90% accurate.
- What is $\mathrm{P}(\$=$ true $\mid \mathrm{T}=$ true $)$ then?

Playing around with the numbers

$$
P(D \mid T)=\frac{P(T \mid D) P(D)}{P(T \mid D) P(D)+P(T \mid \bar{D}) P(\bar{D})}
$$

- What if the test were 100% reliable?

$$
P(D \mid T)=\frac{1.0 \times 0.001}{1.0 \times 0.001+0.0 \times 0.999}=1.0
$$

- What if the test was the same, but disease wasn't so rare?

$$
P(D \mid T)=\frac{0.9 \times 0.1}{0.9 \times 0.1+0.1 \times 0.999}=0.5
$$

Repeating the test

- We can relax, $P(D \mid T)=0.0089$, right?
- Just to be sure the doctor recommends repeating the test.
- How do we represent this?

$$
P\left(D \mid T_{1}, T_{2}\right)
$$

- Again, we apply Bayes' rule

$$
P\left(D \mid T_{1}, T_{2}\right)=\frac{P\left(T_{1}, T_{2} \mid D\right) P(D)}{P\left(T_{1}, T_{2}\right)}
$$

- How do we model $P\left(T_{1}, T_{2} \mid D\right)$?

Modeling repeated tests

$$
P\left(D \mid T_{1}, T_{2}\right)=\frac{P\left(T_{1}, T_{2} \mid D\right) P(D)}{P\left(T_{1}, T_{2}\right)}
$$

- Easiest is to assume the tests are independent.

$$
P\left(T_{1}, T_{2} \mid D\right)=P(T 1 \mid D) P\left(T_{2} \mid D\right)
$$

- This also implies:

$$
P\left(T_{1}, T_{2}\right)=P(T 1) P\left(T_{2}\right)
$$

- Plugging these in, we have

$$
P\left(D \mid T_{1}, T_{2}\right)=\frac{P\left(T_{1} \mid D\right) P\left(T_{2} \mid D\right) P(D)}{P\left(T_{1}\right) P\left(T_{2}\right)}
$$

Evaluating the normalizing constant again

- Expanding as before we have

$$
P\left(D \mid T_{1}, T_{2}\right)=\frac{P\left(T_{1} \mid D\right) P\left(T_{2} \mid D\right) P(D)}{\sum_{D=\{t, f\}} P\left(T_{1} \mid D\right) P\left(T_{2} \mid D\right) P(D)}
$$

- Plugging in the numbers gives us

$$
P(D \mid T)=\frac{0.9 \times 0.9 \times 0.001}{0.9 \times 0.9 \times 0.001+0.1 \times 0.1 \times 0.999}=0.075
$$

- Another way to think about this:
- What's the chance of I false positive from the test?
- What's the chance of 2 false positives?
- The chance of 2 false positives is still $10 x$ more likely than the a prior probability of having the disease.

Al: Probabilistic Inference 2 $13 \quad$ Michael S. Lewicki \diamond Carnegie Mellon

Simpler: Combining information the Bayesian way

- Let's look at the equation again:

$$
P\left(D \mid T_{1}, T_{2}\right)=\frac{P\left(T_{1} \mid D\right) P\left(T_{2} \mid D\right) P(D)}{P\left(T_{1}\right) P\left(T_{2}\right)}
$$

- If we rearrange slightly:

$$
P\left(D \mid T_{1}, T_{2}\right)=\frac{P\left(T_{2} \mid D\right) P\left(T_{1} \mid D\right) P(D)}{P\left(T_{2}\right) P\left(T_{1}\right)} \longleftarrow \begin{aligned}
& \text { We've seen } \\
& \text { this before! }
\end{aligned}
$$

- It's the posterior for the first test, which we just computed

$$
P\left(D \mid T_{1}\right)=\frac{P\left(T_{1} \mid D\right) P(D)}{P\left(T_{1}\right)}
$$

The old posterior is the new prior

- We can just plugin the value of the old posterior
- It plays exactly the same role as our old prior

$$
\begin{aligned}
& P\left(D \mid T_{1}, T_{2}\right)=\frac{P\left(T_{2} \mid D\right) P\left(T_{1} \mid D\right) P(D)}{P\left(T_{2}\right) P\left(T_{1}\right)} \\
& P\left(D \mid T_{1}, T 2\right)=\frac{P\left(T_{2} \mid D\right) \times 0.0089}{P\left(T_{2}\right)}
\end{aligned}
$$

- Plugging in the numbers gives the same answer:

> This is how Bayesian reasoning combines old information with new information to update our belief states.

$$
\begin{aligned}
P(D \mid T) & =\frac{P(T \mid D) P^{\prime}(D)}{P(T \mid D) P^{\prime}(D)+P(T \mid \bar{D}) P^{\prime}(\bar{D})} \\
P(D \mid T) & =\frac{0.9 \times 0.0089}{0.9 \times 0.0089+0.1 \times 0.9911}=0.075
\end{aligned}
$$

Bayesian inference for distributions

- The simplest case is true or false propositions
- The basic computations are the same for distributions

An example with distributions: coin flipping

- In Bernoulli trials, each sample is either I (e.g. heads) with probability θ, or 0 (tails) with probability I - θ.
- The binomial distribution specifies the probability of the total \# of heads, y, out of n trials:

$$
p(y \mid \theta, n)=\binom{n}{y} \theta^{y}(1-\theta)^{n-y}
$$

*AI: Probabilistic Inference 2 $\quad 17 \quad$ Michael S. Lewicki \diamond Carnegie Mellon

The binomial distribution

- In Bernoulli trials, each sample is either I (e.g. heads) with probability θ, or 0 (tails) with probability I - θ.
- The binomial distribution specifies the probability of the total \# of heads, y, out of n trials:

$$
p(y \mid \theta, n)=\binom{n}{y} \theta^{y}(1-\theta)^{n-y}
$$

The binomial distribution

- In Bernoulli trials, each sample is either I (e.g. heads) with probability θ, or 0 (tails) with probability I - θ.
- The binomial distribution specifies the probability of the total \# of heads, y, out of n trials:

$$
p(y \mid \theta, n)=\binom{n}{y} \theta^{y}(1-\theta)^{n-y}
$$

*AI: Probabilistic Inference 2 $19 \quad$ Michael S. Lewicki \diamond Carnegie Mellon

Applying Bayes’ rule

- Given n trials with k heads, what do we know about θ ?
- We can apply Bayes' rule to see how our knowledge changes as we acquire new observations:

$$
\begin{aligned}
& \text { likelihood prior } \\
& p(\theta \mid y, n)=\frac{p(y \mid \theta, n) p(\theta \mid n)}{p(y \mid n)=} \int p(y \mid \theta, n) p(\theta \mid n) d \theta
\end{aligned}
$$

- We know the likelihood, what about the prior?
- Uniform on $[0, I]$ is a reasonable assumption, i.e. "we don't know anything".
- What is the form of the posterior?
- In this case, the posterior is just proportional to the likelihood:

$$
p(\theta \mid y, n) \propto\binom{n}{y} \theta^{y}(1-\theta)^{n-y}
$$

Updating our knowledge with new information

- Now we can evaluate the poster just by plugging in different values of y and n.

$$
p(\theta \mid y, n) \propto\binom{n}{y} \theta^{y}(1-\theta)^{n-y}
$$

- Check:What goes on the axes?

Evaluating the posterior

- What do we know initially, before observing any trials?

Coin tossing

- What is our belief about θ after observing one "tail" ? How would you bet?

$$
\text { Is the } p(\theta>0.5) \text { less or greater than } 0.5 \text { ? }
$$

What about $\mathrm{p}(\theta>0.3)$?

Coin tossing

- Now after two trials we observe I head and I tail.

Coin tossing

- 3 trials: I head and 2 tails.

Coin tossing

- 4 trials: I head and 3 tails.

Coin tossing

- 5 trials: I head and 4 tails.

Do we have good evidence that this coin is biased? How would you quantify this statement? $p(\theta>0.5)=\int_{0.5}^{1.0} p(\theta \mid y, n) d \theta$

Can we substitute the expression above?
 No! lt's not normalized.

*AI: Probabilistic Inference 2 $27 \quad$ Michael S. Lewicki \diamond Carnegie Mellon

Evaluating the normalizing constant

- To get proper probability density functions, we need to evaluate $p(y \mid n)$:

$$
p(\theta \mid y, n)=\frac{p(y \mid \theta, n) p(\theta \mid n)}{p(y \mid n)}
$$

- Bayes in his original paper in 1763 showed that:

$$
\begin{aligned}
p(y \mid n) & =\int_{0}^{1} p(y \mid \theta, n) p(\theta \mid n) d \theta \\
& =\frac{1}{n+1} \\
\Rightarrow p(\theta \mid y, n) & =\binom{n}{y} \theta^{y}(1-\theta)^{n-y}(n+1)
\end{aligned}
$$

More coin tossing

- After 50 trials: 17 heads and 33 tails.

What's a good estimate of θ ?

- There are many possibilities.

AI: Probabilistic Inference 2 $29 \quad$ Michael S. Lewicki \diamond Carnegie Mellon

A ratio estimate

- Intuitive estimate: just take ratio $\theta=17 / 50=0.34$

The maximum a posteriori (MAP) estimate

- This just picks the location of maximum value of the posterior
- In this case, maximum is also at $\theta=0.34$.

[^0]
A different case

- What about after just one trial: 0 heads and I tail?
- MAP and ratio estimate would say 0.

Does this make sense?

- What would a better estimate be?

The expected value estimate

- We defined the expected value of a pdf in the previous lecture:

$$
E(\theta \mid y, n)=\int_{0}^{1} \theta p(\theta \mid y, n) d \theta
$$

[^1]
Much more coin tossing

- After 500 trials: 184 heads and 316 tails.

What's your guess of θ ?

Much more coin tossing

- After 5000 trials: 1948 heads and 3052 tails.
- Posterior contains true estimate.

$\begin{array}{lllllll}0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 1\end{array}$
θ

Laplace's example: proportion female births

- A total of 24I,945 girls and 25I,527 boys were born in Paris from 1745-I770.
- Laplace was able to evaluate the following

Laplace and the mass of Saturn

- Laplace used "Bayesian" inference to estimate the mass of Saturn and other planets. For Saturn he said:

It is a bet of IIO00 to I that the error in this result is not within I/IOOth of its value

Mass of Saturn as a fraction of the mass of the Sun	
Laplace (1815)	NASA (2004)
3512	3499.1

$(3512-3499.1) / 3499.1=0.0037$
Laplace is still wining.

Al: Probabilistic Inference 2 $\quad 37 \quad$ Michael S. Lewicki \diamond Carnegie Mellon

Applying Bayes' rule with an informative prior

- What if we already know something about θ ?
- We can still apply Bayes' rule to see how our knowledge changes as we acquire new observations:

$$
p(\theta \mid y, n)=\frac{p(y \mid \theta, n) p(\theta \mid n)}{p(y \mid n)}
$$

- But now the prior becomes important.
- Assume we know biased coins are never below 0.3 or above 0.7.
- To describe this we can use a beta distribution for the prior.

A beta prior

- In this case, before observing any trials our prior is not uniform:

Coin tossing revisited

- What is our belief about θ after observing one "tail" ?
- With a uniform prior it was:

What will it look like with our prior?

Coin tossing with prior knowledge

- Our belief about θ after observing one "tail" hardly changes.

Coin tossing

- After 50 trials, it's much like before.

Coin tossing

- After 5,000 trials, it's virtually identical to the uniform prior.

\bullet Al: Probabilistic Inference 2 $\quad 43 \quad$ Michael S. Lewicki \diamond Carnegie Mellon

Next time

- multivariate inference
- introduction to more sophisticated models
- belief networks

[^0]: *AI: Probabilistic Inference 2

[^1]: *AI: Probabilistic Inference 2 $33 \quad$ Michael S. Lewicki \diamond Carnegie Mellon

