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Review of concepts from last lecture

Making rational decisions when faced with uncertainty:

• Probability

the precise representation of knowledge and uncertainty

• Probability theory

how to optimally update your knowledge based on new information

• Decision theory: probability theory + utility theory

how to use this information to achieve maximum expected utility

Basic concepts

• random variables

• probability distributions (discrete) and probability densities (continuous)

• rules of probability

• expectation and the computation of 1st and 2nd moments

• joint and multivariate probability distributions and densities

• covariance and principal components
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Simple example: medical test results

• Test report for rare disease is positive, 90% accurate

• What’s the probability that you have the disease?

• What if the test is repeated?

• This is the simplest example of reasoning by combining sources of information.

3

Michael S. Lewicki ! Carnegie MellonAI: Probabilistic Inference 2

How do we model the problem?

• Which is the correct description of  “Test is 90% accurate” ?

• What do we want to know?

• More compact notation:
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P (T = true|D = true) → P (T |D)

P (T = false|D = false) → P (T̄ |D̄)

P (T = true) = 0.9

P (T = true|D = true) = 0.9

P (D = true|T = true) = 0.9

P (T = true)

P (T = true|D = true)

P (D = true|T = true)



Michael S. Lewicki ! Carnegie MellonAI: Probabilistic Inference 2

Evaluating the posterior probability through Bayesian inference

• We want P(D|T) = “The probability of the having the disease given a positive test”

• Use Bayes rule to relate it to what we know: P(T|D)

• What’s the prior P(D)?

• Disease is rare, so let’s assume

• What about P(T)?

• What’s the interpretation of that?
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P (D|T ) =
P (T |D)P (D)

P (T )
posterior

likelihood prior

normalizing 
constant

P (D) = 0.001
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Evaluating the normalizing constant

• P(T) is the marginal probability of P(T,D) = P(T|D) P(D)

• So, compute with summation

• For true or false propositions:
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P (D|T ) =
P (T |D)P (D)

P (T )
posterior

likelihood prior

normalizing 
constant

P (T ) =
∑

all values of D

P (T |D)P (D)

P (T ) = P (T |D)P (D) + P (T |D̄)P (D̄)

What are 
these?
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Refining our model of the test

• We also have to consider the negative case to incorporate all information:

• What should it be?

• What about          ?
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P (T |D) = 0.9

P (T |D̄) = ?

P (D̄)
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Plugging in the numbers

• Our complete expression is

• Plugging in the numbers we get:

• Does this make intuitive sense?
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P (D|T ) =
P (T |D)P (D)

P (T |D)P (D) + P (T |D̄)P (D̄)

P (D|T ) =
0.9 × 0.001

0.9 × 0.001 + 0.1 × 0.999
= 0.0089
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Same problem different situation

• Suppose we have a test to determine if you won the lottery.

• It’s 90% accurate.

• What is P($ = true | T = true) then?
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Playing around with the numbers

• What if the test were 100% reliable?

• What if the test was the same, but disease wasn’t so rare?
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P (D|T ) =
1.0 × 0.001

1.0 × 0.001 + 0.0 × 0.999
= 1.0

P (D|T ) =
0.9 × 0.1

0.9 × 0.1 + 0.1 × 0.999
= 0.5

P (D|T ) =
P (T |D)P (D)

P (T |D)P (D) + P (T |D̄)P (D̄)
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Repeating the test

• We can relax, P(D|T) = 0.0089, right?

• Just to be sure the doctor recommends repeating the test.

• How do we represent this?

• Again, we apply Bayes’ rule

• How do we model P(T1,T2|D)?
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P (D|T1, T2)

P (D|T1, T2) =
P (T1, T2|D)P (D)

P (T1, T2)
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Modeling repeated tests

• Easiest is to assume the tests are independent.

• This also implies:

• Plugging these in, we have
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P (T1, T2|D) = P (T 1|D)P (T2|D)

P (D|T1, T2) =
P (T1, T2|D)P (D)

P (T1, T2)

P (T1, T2) = P (T 1)P (T2)

P (D|T1, T2) =
P (T1|D)P (T2|D)P (D)

P (T1)P (T2)
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Evaluating the normalizing constant again

• Expanding as before we have

• Plugging in the numbers gives us

• Another way to think about this:

- What’s the chance of 1 false positive from the test?

- What’s the chance of 2 false positives?

• The chance of 2 false positives is still 10x more likely than the a prior probability 
of having the disease.
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P (D|T1, T2) =
P (T1|D)P (T2|D)P (D)

∑
D={t,f} P (T1|D)P (T2|D)P (D)

P (D|T ) =
0.9 × 0.9 × 0.001

0.9 × 0.9 × 0.001 + 0.1 × 0.1 × 0.999
= 0.075
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Simpler: Combining information the Bayesian way

• Let’s look at the equation again:

• If we rearrange slightly:

• It’s the posterior for the first test, which we just computed
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P (D|T1, T2) =
P (T1|D)P (T2|D)P (D)

P (T1)P (T2)

P (D|T1, T2) =
P (T2|D)P (T1|D)P (D)

P (T2)P (T1)

We’ve seen 
this before!

P (D|T1) =
P (T1|D)P (D)

P (T1)
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The old posterior is the new prior

• We can just plugin the value of the old posterior

• It plays exactly the same role as our old prior

• Plugging in the numbers gives the same answer:
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P (D|T1, T2) =
P (T2|D)P (T1|D)P (D)

P (T2)P (T1)

P (D|T1, T 2) =
P (T2|D) × 0.0089

P (T2)

P (D|T ) =
P (T |D)P ′(D)

P (T |D)P ′(D) + P (T |D̄)P ′(D̄)

P (D|T ) =
0.9 × 0.0089

0.9 × 0.0089 + 0.1 × 0.9911
= 0.075

This is how Bayesian 
reasoning combines old 
information with new 
information to update 
our belief states.
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Bayesian inference for distributions

• The simplest case is true or false propositions

• The basic computations are the same for distributions

16
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An example with distributions: coin flipping

• In Bernoulli trials, each sample is either 1 (e.g. heads) with probability ", or 0 (tails) 
with probability 1 # ".

• The binomial distribution specifies the probability of the total # of heads, y, out of 
n trials:
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p(y|θ, n) =

(

n

y

)

θy(1 − θ)n−y
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The binomial distribution

• In Bernoulli trials, each sample is either 1 (e.g. heads) with probability ", or 0 (tails) 
with probability 1 # ".

• The binomial distribution specifies the probability of the total # of heads, y, out of 
n trials:
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p(y|θ, n) =
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The binomial distribution

• In Bernoulli trials, each sample is either 1 (e.g. heads) with probability ", or 0 (tails) 
with probability 1 # ".

• The binomial distribution specifies the probability of the total # of heads, y, out of 
n trials:
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p(y|θ, n) =

(

n

y

)

θy(1 − θ)n−y
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) How do we determine " 
from a set of trials?
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Applying Bayes’ rule

• Given n trials with k heads, what do we know about "?

• We can apply Bayes’ rule to see how our knowledge changes as we acquire new 
observations:
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p(θ|y, n) =
p(y|θ, n)p(θ|n)

p(y|n)
posterior

likelihood prior

normalizing 
constant

 $   Uniform on [0, 1] is a reasonable assumption,  i.e. “we don’t know anything”.

 $   We know the likelihood, what about the prior?

=

∫
p(y|θ, n)p(θ|n)dθ

p(θ|y, n) ∝

(

n

y

)

θy(1 − θ)n−y

 $   In this case, the posterior is just proportional to the likelihood:

 $   What is the form of the posterior?
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Updating our knowledge with new information

• Now we can evaluate the poster just by plugging in different values of y and n.
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p(θ|y, n) ∝

(

n

y

)

θy(1 − θ)n−y

 $   Check: What goes on the axes?
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Evaluating the posterior
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 $   What do we know initially, before observing any trials?
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Coin tossing
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 $   What is our belief about " after observing one “tail” ? How would you bet?

Is the p(" >0.5) less or greater than 0.5?

What about p(" >0.3)?
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Coin tossing
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 $   Now after two trials we observe 1 head and 1 tail.
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Coin tossing

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
!

p
(!

 |
 y

=
1

, 
n

=
3

)

 $   3 trials: 1 head and 2 tails.
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Coin tossing
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 $   4 trials: 1 head and 3 tails.
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Coin tossing
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 $   5 trials: 1 head and 4 tails. Do we have good evidence that this coin is biased?

How would you quantify this statement?

p(θ > 0.5) =

∫ 1.0

0.5

p(θ|y, n)dθ

Can we substitute the expression above?

No! It’s not normalized.
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Evaluating the normalizing constant

• To get proper probability density functions, we need to evaluate p(y|n):
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p(θ|y, n) =
p(y|θ, n)p(θ|n)

p(y|n)

 $   Bayes in his original paper in 1763 showed that:

p(y|n) =

∫ 1

0

p(y|θ, n)p(θ|n)dθ

=
1

n + 1

⇒ p(θ|y, n) =

(

n

y

)

θy(1 − θ)n−y(n + 1)
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More coin tossing

• After 50 trials: 17 heads and 33 tails.
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What’s a good estimate of "?

 $   There are many possibilities.
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A ratio estimate
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 $   Intuitive estimate: just take ratio " = 17/50 = 0.34

y/n = 0.34
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The maximum a posteriori (MAP) estimate

• This just picks the location of maximum value of the posterior
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 $   In this case, maximum is also at " = 0.34.

MAP estimate = 0.34
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A different case

• What about after just one trial: 0 heads and 1 tail?
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 $  MAP and ratio estimate would say 0.

y/n = 0

*

Does this make sense?

 $  What would a better estimate be?
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The expected value estimate

• We defined the expected value of a pdf in the previous lecture:
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E(θ|y, n) =

∫ 1

0

θp(θ|y, n)dθ

=
y + 1

n + 2

What happens for zero trials?

E(θ|y = 0, n = 1) =
1

3
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Much more coin tossing

• After 500 trials: 184 heads and 316 tails.
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What’s your guess of "?
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Much more coin tossing

• After 5000 trials: 1948 heads and 3052 tails.
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True value is 0.4.

 $   Posterior contains true estimate. Is this always the case?

NO!  Only if the 
assumptions are 

correct.

How could our assumptions be wrong?
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Laplace’s example: proportion female births

• A total of 241,945 girls and 251,527 boys were born in Paris from 1745-1770.

• Laplace was able to evaluate the following
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p(θ > 0.5) =

∫ 1.0

0.5

p(θ|y, n)dθ ≈ 1.15 × 10
−42

He was “morally certain” " < 0.5.
But could he have been wrong?
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Laplace and the mass of Saturn

• Laplace used “Bayesian” inference to estimate the mass of Saturn and other 
planets.  For Saturn he said:

It is a bet of 11000 to 1 that the error in this result is not within 1/100th of its value
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Mass of Saturn as a fraction of 
the mass of the Sun

Laplace
(1815)

NASA
(2004)

3512 3499.1

(3512 - 3499.1) / 3499.1 = 0.0037

Laplace is still wining.
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Applying Bayes’ rule with an informative prior

• What if we already know something about "?

• We can still apply Bayes’ rule to see how our knowledge changes as we acquire 
new observations:
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p(θ|y, n) =
p(y|θ, n)p(θ|n)

p(y|n)

 $   Assume we know biased coins are never below 0.3 or above 0.7.

 $   But now the prior becomes important.

 $   To describe this we can use a beta distribution for the prior.
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A beta prior
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 $   In this case, before observing any trials our prior is not uniform:

Beta(a=20,b=20)
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Coin tossing revisited
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 $   What is our belief about " after observing one “tail” ?

 $   With a uniform prior it was:

What will it look like with our prior?
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Coin tossing with prior knowledge
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 $   Our belief about " after observing one “tail” hardly changes.
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Coin tossing
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 $   After 50 trials, it’s much like before.
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Coin tossing
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 $   After 5,000 trials, it’s virtually identical to the uniform prior.

What did we gain?
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Next time

• multivariate inference

• introduction to more sophisticated models

• belief networks
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