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Uncertainty and Error
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Uncertainty in Robotics

- Fundamentally, models are imperfect.

- Sensors aren't perfect
- Actuation isn't either
- But you have to do something

« Probability as uncertainty e
- Probability theory can be applied to these problems

- Key idea: explicit representation of uncertainty
using the calculus of probability theory
Perception = state estimation
Action = utility optimization

Error and Uncertainty

- Sensing is always related to uncertainty.

= What are the sources of uncertainties?

- Blown-out camera; iffy rangefinder; skidding wheel;
background noise; poor speech model; what else?

« How can uncertainties be represented /
quantified

+ Deterministic vs. random error

+ How do they propagate?
« Uncertainty of a function of uncertain values?
- How do uncertainties combine if different sensor
reading are fused?

Example: State Estimation

« Is the door open?

. Camera + edge detection says the door is not at right

angles

« Odometry says I'm 2.0 meters away from door frame

- Depth sensor says I'm 2.0 meters away from door

good indoors?
* Odometry very noi

* This specific depth

* Edge detection pretty

Sy,

could be off by 20cm.

sensor is very good

Distributions
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- How can a reading be wrong?
- Poor surface for your distance sensor
- You may be using an imprecise ranging method
- Someone walked in front of it
- So where is the door?




Vision Z% ]

« What are we looking at? P
L7

P> F‘,g

Rational decisions & uncertainty ﬁ

- Making rational decisions under uncertainty
- Probability
« the precise representation of knowledge and uncertainty
- Probability theory

+ How to optimally update your knowledge based on new
information

- Decision theory: probability theory + utility theory

+ How to use this information to achieve maximum expected utility

Discrete Random Variables !ﬁ

« X denotes a random variable.

« X can take countable number of values in {x;, x>,
ooy X}

« P(X=x;) or P(x;) or Pr(x;) is the probability that the
random variable X takes on value x;.

« P()is called its probability mass function.

- Eg.
P(RoomType) = <O.7,0.2,0.08,0.02>
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Vision _ ;‘ﬁ :
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Decision-Making + Utility 4
- Decision theory: probability theory + utility
theory
+ How to use this information to achieve maximum expected
utility (“Goodness”)
« Consider a bus schedule. What's the utility
function?
- Aschedule says the bus comes at 8:05.
Situation A: You have a class at 8:30.
Situation B: You have a class at 8:30, and it’s cold and raining.
Situation C: You have a final exam at 8:30, it’s cold and raining.
10
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Continuous Random Variables-::ﬂfﬁ"f

« Xtakes on values in the continuum.

« p(X=x), or p(x), is a probability density function.

Pr(x € (a,b)) = [ p(x)dx
- E.g. “

P(x)
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Axioms of Probability g

« Pr(A) denotes probability that proposition A is true.

- Axioms (Kolmogorov): 0<pA)=1
P(True)=1 P(False)=0
P(Av B)=P(A)+ P(B)=P(AAB)
- Corollaries: n
+ A random variable must sum to one: EP(D =d;)=1
i=1

- The joint probability of a set of variables must also sum
to one

- If A and B are mutually exclusive: P(4 v B) = P(4) +
P(B)
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Rules of Probability g

» Conditional probability

P(A|B)= P(B)»>0

P(AAB)
B

- Corollary: Bayes Law

P(B|A) P(4) = P(A and B) = P(4|B) P(B)

P(A1B) P(B) _likelihood * prior

2/25/20

Conditionality w5

- P(Bl4)
- Probability of event B given Event A
- aka -
- Pretend A has already happened, or we know how

likely it is to happen. Now what is the chance of
event B? (For all possible values of A?)

« P(B|A)is the “"Conditional Probability” of B
given A
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Bayes! L

. Probability of an event based on conditions
that may relate to that event

P(x,y)=P(x1y)P(y) = P(y | x)P(x)

=

P(ylx) P(x) _ likelihood - prior

P(x|y)= )

evidence

= P(B|A)= .
P(A) evidence
Probability of an event based on a prior:
Conditions that may relate to that event
15
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Independence )

« Two variables X, Y are independent when the
probability of X'is not related to the probability V:

P(x|y) =P(x)
and

P(x and y) = P(x) - P(y)

for all values of X andY

Alice Bob
late late

= Is Alice late to work? Is Bob late to work?
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Conditional Dependence

- Two variables X, Y are conditionally dependent
when P(X) and P(Y) each depend on a third
factor, P(2):

P(x,y|2)=P(x12)P(ylz)

=
P(x‘ 2)=P(x|z,y) for all values of X andY

P(y| )28y z.x)

- Alice late / Bob late / Snowing
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Bayes + Background Knowledge

- Probability of an event based on conditions
that may relate to that event

- Example: Does Alice have cancer?
- Alice is 65
- If cancer is related to age, we can use that

knowledge to improve accuracy of our assessment
using Bayes

P(y|x,z) P(x]|z)

Pely =05
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Casual (Observed] Priors

- P(open|z) is diagnostic.

« P(z|open) is causal.

nowledge is easier to obtain.
- Bayes rule allows™gto use causal knowledge:

count frequencies!

P(z|open)P(open)

P(open|z)= P)
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Combining Evidence

« Suppose our robot obtains another
observation z,.

- How can we integrate this new information?

= More generally, how can we estimate
P(x| z1...z4)?
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State Estimation T

&

= Suppose a robot obtains measurement z
- z = vision + edge detection

» What is P(open|z)?

21

21

Example 'ﬁ]

~

« P(z|open) = 0.6 P(z|—open) = 0.3

= P(open) = P(—open) = 0.5

P(z|open)P(open)
P(z|open)p(open)+ P(z|—open) p(—open)
0.6-0.5 2

2 _Z_067
0.6-0.5+03-0.5 3

P(open|z)=

P(open|z)=

This z gives higher probability that the door is open.
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Second Measurement %

= P(z;|open) = 0.5
= P(open|z;)=2/3

P(z;]—open) = 0.6

P(z, |open) P(open|z,)

P(open|z,,z,) =
(open| z,.2,) P(z, | open) P(open| z,)+ P(z, | ~open) P(—open| z,)
r2
23 _5_
12 317870'625
e
23 53

z, gives higher probability that the door is open.
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Recursive Bayesian Updating = %; Statistics Review %
Plx| 21, 20) = P(zn|x,21,...,z0-1) P(x| 21,...,20-1) . Expected vqlue of a real-valued random variable
P(zn|z1,....20-1) X with density f(x):
- EX] =Ixfx)

Markov assumption: z, is independent of z;,...,z,.; if we know x .
» Expected value of a discrete-valued random

P(zo| %) P(x| 20..r20 1) variable X with distribution P(x):

P(x|zy...,zn) = « E[X] =2x P(x)
P(zn|21,...,20-1) - Suppose X corresponds to outcome of die roll:
=1 P(z0| X) P(x| 21,...,z0-1) S EXI=1*1/6+2%1/6+3%1/6+4%1/6+5%1/6+6*1/6
e CEX]=1/6*(1+2+3+4+5+6)=35
pr:kJ(fblﬁt))i " = _HP(Z" | x) P(x) - If random variables X1 and X; are independent:
Bgiven A - EIXy Xo] = EDXq] * E[Xo]
26 27
26 27
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Statistics Review % Error and Accuracy %
- Variance: how far a set of numbers is spread out. » Error: Difference between sensor output and
. Elix- 02) = [ x2 <) - u2 true value
- recall %% is the mean value error = my { m = measured value Ex: 1.2
- If the variables are correlated, then we have v = true value meters
covariance erjor
» Covariance « Accuracy: a unitless méasure
« Given two random variables, X1 and X2 ( _ )
accuracy = 1-
« E[(X1 - pX1) (X2 - uX2)] v
- What happens in the following case?
« When X1 is above its mean, X2 tends to be below its mean
= When X1 is above its mean, X2 tends to be way above its mean
28 Adapted from © R. Siegwart, ETH Ziirich — A28}
28 29
Precision (But Not as in Recall) % Statistical Representation of E
= Precision: Reproducibility of sensor results - Error: the difference between measured and
true value

- Adistribution of error can be characterized by:
+ Mean error: p
- Standard deviation: o
- How similar are two outputs from the same test?
- Same sensor, same environment ...

« How can we treat sensing as estimation?

» X: random variable representing actual value
- E.g., “distance = 4 meters”

« E[X]: estimate of the true value

.. range
precision = =—
G - Given n sensor readings (g1, 02, ..., on)
- Has other meanings in actuation and cognition . EIX] = glol, 02 on)
30 31
30 31
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Representation of Uncertainty

= Specific errors are usually unknown, but...

= Errors exist on a spectrum:
. Deterministic === Non-deterministic (random)

« Some errors are consistent for some circumstances,
and can be characterized. These are more
deterministic.

- A probability density function gives a probability
density f(x) for any x in X.

Representing Uncertainty

« Sensing as estimation problem:

true (unknown) value = X
estimate of value E[X]

- Given n measurements with values : o[1-n]
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Uncertainty Representation (2] *}]

Area under curve = 1:

J‘I. f(x)dx =1

sum of all possible
probability values.

Mean: Variance:

u = E[X] = I xf(x)dx G~ = j (x = p)f(x)dx
i The “width” of possible
values X might take.

...if we measure X infinite times
and average the values we see.

Gaussian Distribution

formula for Gaussian
w=0ando =1 e p[ @ p,-]
! ol o

2 207

0.4

percentage of

readings within
one standard

distribution

f(x)
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Error Distributions %

= Random errors: behavior of sensors modeled
by some probability distribution

» Causes and behavior of error usually unknown
- So what do we do?

« Simplifying assumptions:
« Zero-mean error
+ Unimodal distribution
- Symmetric distribution
. Gaussian distribution
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Simplifying Assumptions %

« Important to remember assumptions are wrong!

- Examples:
- Sonar (ultrasonic) sensor more likely to overestimate
distance in real environment
- Is therefore not symmetric
= Might be better modeled by two modes:
- Mode for the case that the signal returns directly
= Mode for the case that the signals returns after reflections
- Stereo vision system might not correlate images
- Results that make no sense at all
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Error Propagation

= How do we combine a series of uncertain

measurements?
« (Basically the usual case for sensing)

- Propagation of uncertainty (or propagation
of error)

- Fuse a sequence of readings into a single
value
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Confidence Limits

- With a probability
distribution, can find
confidence limits

. fx nomal

« Example: X dooon

- The 68% confidence limits for
a one-dimensional variable in P

00135 1359 3413 | 3413 | 1350)

a normal distribution are £ e

0214

Gaussian or

00135
~

20 30

one std. dev. from the value x
- Approximately a 68%

probability that the true value

lies in the region x £ o
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Error Propagation Law

- Try extracting a line based
on point measurements
with uncertainties.

+ The model parameters ri
(length of the perpendicular)
and qi (its angle to the
abscissa) describe a
line uniquely.

i

« The question:

- What is the uncertainty of the extracted line
knowing the uncertainties of the measurement
points that contribute to it?

Xi= (pn ei)
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Error Propagation Law

- The effect of variables’ uncertainty on the
uncertainty of a function that depends on them.

Absolute error Ax
Error on some quantity, Ax, is given as

Standard deviation: the positive square root
of variance, 062

» With a probability distribution, can find
confidence limits

« How sure are we of our estimate?
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The Error Propagation Law

u

X em— Yi
X, em— System Y
i et Yo

« Error propagation in a multi-input multi-output
system with n inputs and m outputs.

Y= £ )
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The Error Propagation Law

One-dimensional case
of an error propagation
problem

- The output covariance
matrix Cy is given by
the error propagation
law: o — -’
aw C Yy~ F.\'(’.\’F.\'

- where

= Cx: covariance matrix

representing the input
uncertainties

- Cr. covariance matrix
representing the
Fropagated uncertainties
or the outputs.

+ Fx: is the Jacobian matrix
defined as:
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