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Uncertainty and Error

Many slides adapted from slides © R. Siegwart, Steve Seitz, J. Tim Oates
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§ Fundamentally, models are imperfect.
§ Sensors aren’t perfect
§ Actuation isn’t either
§ But you have to do something

§ Probability as uncertainty
§ Probability theory can be applied to these problems

§ Key idea: explicit representation of uncertainty 
using the calculus of probability theory

Perception = state estimation
Action = utility optimization

§ • review of basis probabilistic concepts 

§ - discrete and continuous probability - joint 
and marginal probability
- calculating probability 

§ • next probability lecture: the process of 
probabilistic inference 

Uncertainty in Robotics
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§ Sensing is always related to uncertainty. 

§ What are the sources of uncertainties?
§ Blown-out camera; iffy rangefinder; skidding wheel; 

background noise; poor speech model; what else?

§ How can uncertainties be represented / 
quantified
§ Deterministic vs. random error

§ How do they propagate?
§ Uncertainty of a function of uncertain values?
§ How do uncertainties combine if different sensor 

reading are fused?

Error and Uncertainty
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§ Is the door open?
§ Camera + edge detection says the door is not at right 

angles
§ Odometry says I’m 2.0 meters away from door frame
§ Depth sensor says I’m 2.0 meters away from door

Example: State Estimation

• Edge	detection	pretty	
good	indoors?

• Odometry very	noisy;	
could	be	off	by	20cm.

• This	specific	depth	
sensor	is	very	good
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Distributions

§ How can a reading be wrong?
§ Poor surface for your distance sensor 
§ You may be using an imprecise ranging method
§ Someone walked in front of it
§ So where is the door?
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Vision

§ What are we looking at?
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Vision

Edge	
detection?
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§ Making rational decisions under uncertainty 
§ Probability

§ the precise representation of knowledge and uncertainty 

§ Probability theory
§ How to optimally update your knowledge based on new 

information 

§ Decision theory: probability theory + utility theory
§ How to use this information to achieve maximum expected utility 

Rational decisions & uncertainty 
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§ Decision theory: probability theory + utility 
theory

§ How to use this information to achieve maximum expected
utility (“Goodness”)

§ Consider a bus schedule. What’s the utility 
function?
§ A schedule says the bus comes at 8:05.

Situation	A:		You	have	a	class	at	8:30.
Situation	B:		You	have	a	class	at	8:30,	and	it’s	cold	and	raining.
Situation	C:		You	have	a	final	exam	at	8:30,	it’s	cold	and	raining.

Decision-Making + Utility
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Discrete Random Variables

§ X denotes a random variable.

§ X can take countable number of values in {x1, x2, 
…, xn}

§ P(X=xi) or P(xi) or Pr(xi) is the probability that the 
random variable X takes on value xi.

§ P(•) is called its probability mass function.

§ E.g.
P(RoomType) = 0.7, 0.2, 0.08, 0.02
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Continuous Random Variables

§ X takes on values in the continuum.

§ p(X=x), or p(x), is a probability density function.

§ E.g.
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Axioms of Probability

§ Pr(A) denotes probability that proposition A is true.

§ Axioms (Kolmogorov):

§ Corollaries: 
§ A random variable must sum to one:

§ The joint probability of a set of variables must also sum 
to one

§ If A and B are mutually exclusive: P(A ∨ B) = P(A) + 
P(B) 

0 ≤ P(A) ≤1
P(True) =1
P(A∨B) = P(A)+P(B)−P(A∧B)

P(False) = 0

P(D = di ) =1
i=1

n
∑
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§ P(B|A) 

§ Probability of event B given Event A

- aka -

§ Pretend A has already happened, or we know how 
likely it is to happen. Now what is the chance of 
event B? (For all possible values of A?)

§ P(B | A) is the “Conditional Probability” of B 

given A

Conditionality
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Rules of Probability

§ Conditional probability 

§ Corollary: Bayes Law

P(B|A) P(A) = P(A and B) = P(A|B) P(B)

P(A B) = P(A∧B)
P(B)

P(B)> 0,

P(B A) = P(A | B) P(B)
P(A)

=
likelihood • prior

evidence
⇒

Probability	of	an	event	based	on	a	prior:
Conditions	that	may	relate	to	that	event
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§ Probability of an event based on conditions
that may relate to that event

Bayes!

P(x, y) = P(x | y)P(y) = P(y | x)P(x)
⇒

P(x y) = P(y | x) P(x)
P(y)

=
likelihood ⋅prior

evidence
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Independence

§ Two variables X, Y are independent when the 
probability of X is not related to the probability Y:

P(x|y) = P(x)

and

P(x and y) = P(x) • P(y)

§ Is Alice late to work? Is Bob late to work?

for all values of X and Y

Alice 
late

Bob
late
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Conditional Dependence

§ Two variables X, Y are conditionally dependent 
when P(X) and P( Y) each depend on a third 
factor, P(Z):

⇔

and

§ Alice late / Bob late / Snowing

P(x, y z)=P(x | z)P(y | z)

),|()( yzxPzxP =

),|()( xzyPzyP =

for all values of X and Y

Alice 
late

Bob
late

Snow
-ing
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Bayes + Background Knowledge

§ Probability of an event based on conditions 
that may relate to that event

§ Example:  Does Alice have cancer? 
§ Alice is 65
§ If cancer is related to age, we can use that 

knowledge to improve accuracy of our assessment 
using Bayes
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§ Suppose a robot obtains measurement z
§ z = vision + edge detection

§ What is P(open|z)?

State Estimation
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§ P(open|z) is diagnostic.

§ P(z|open) is causal.

§ Often causal knowledge is easier to obtain.

§ Bayes rule allows us to use causal knowledge:

)(
)()|()|( zP

openPopenzPzopenP =

count frequencies!

Casual (Observed) Priors
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Example

§ P(z|open) = 0.6 P(z|¬open) = 0.3

§ P(open) = P(¬open) = 0.5

67.0
3
2

5.03.05.06.0
5.06.0)|(
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==
×+×

×
=

¬¬+
=

zopenP

openpopenzPopenpopenzP
openPopenzPzopenP

This	z gives	higher	probability	that	the	door	is	open.
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Combining Evidence

§ Suppose our robot obtains another 
observation z2.

§ How can we integrate this new information?

§ More generally, how can we estimate
P(x| z1...zn )?
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§ P(z2|open) = 0.5 P(z2|¬open) = 0.6

§ P(open|z1)=2/3
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z2 gives	higher	probability	that	the	door	is	open.

Second Measurement
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Recursive Bayesian Updating
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Markov	assumption:	zn is	independent	of z1,...,zn-1 if	we	know	x
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P(B|A):
probability of
B givenA

26

27

27

§ Expected value of a real-valued random variable 
X with density f(x):
§ E[X] = òx f(x)

§ Expected value of a discrete-valued random 
variable X with distribution P(x):
§ E[X] = Sx P(x)
§ Suppose X corresponds to outcome of die roll:

§ E[X] = 1 * 1/6 + 2 * 1/6 + 3 * 1/6 + 4 * 1/6 + 5 * 1/6 + 6 * 1/6
§ E[X] = 1/6 * (1 + 2 + 3 + 4 + 5 + 6) = 3.5

§ If random variables X1 and X2 are independent:
§ E[X1* X2] = E[X1] * E[X2]

Statistics Review
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§ Variance: how far a set of numbers is spread out.
§ E[(x - µ)2] = ò x2 f(x) - µ2 
§ recall µ is the mean value

§ If the variables are correlated, then we have 
covariance

§ Covariance
§ Given two random variables, X1 and X2
§ E[(X1 - µX1) (X2 - µX2)]
§ What happens in the following case?

§ When X1 is above its mean, X2 tends to be below its mean
§ When X1 is above its mean, X2 tends to be way above its mean

Statistics Review
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§ Error: Difference between sensor output and 
true value

§ Accuracy: a unitless measure

Error and Accuracy

error

Adapted from © R. Siegwart, ETH Zürich – ASL

error = m-v m = measured value
v = true value

Ex: 1.2 
meters
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§ Precision: Reproducibility of sensor results

§ A distribution of error can be characterized by:
§ Mean error: μ
§ Standard deviation: σ
§ How similar are two outputs from the same test?

§ Same sensor, same environment …

§ Has other meanings in actuation and cognition 

Precision (But Not as in Recall)

precision  = range
σ
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§ Error: the difference between measured and 
true value

§ How can we treat sensing as estimation?

§ X: random variable representing actual value
§ E.g., “distance = 4 meters”

§ E[X]: estimate of the true value

§ Given n sensor readings (ρ1, ρ2, …, ρn) 

§ E[X] = g(ρ1, ρ2, …, ρn)

Statistical Representation of Error

31
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§ Specific errors are usually unknown, but…

§ Errors exist on a spectrum:

§ Deterministic Non-deterministic (random)

§ Some errors are consistent for some circumstances, 
and can be characterized. These are more 
deterministic.

§ A probability density function gives a probability 
density f(x) for any x in X.

Representation of Uncertainty
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§ Sensing as estimation problem:

§ Given n measurements with values : σ[1-n]

Representing Uncertainty

true (unknown) value = X
estimate of value = E[X] 
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Uncertainty Representation (2)

Mean:

…if we measure X infinite times
and average the values we see.

Variance:

The “width” of possible 
values X might take.

Area under curve = 1:

sum of all possible 
probability values.
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Gaussian Distribution

0.4

-1-2 1 2

percentage of 
readings within 
one standard 
distribution

formula for Gaussian
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§ Random errors: behavior of sensors modeled 
by some probability distribution

§ Causes and behavior of error usually unknown
§ So what do we do?

§ Simplifying assumptions:
§ Zero-mean error
§ Unimodal distribution
§ Symmetric distribution
§ Gaussian distribution

Error Distributions
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§ Important to remember assumptions are wrong!

§ Examples:
§ Sonar (ultrasonic) sensor more likely to overestimate 

distance in real environment 
§ Is therefore not symmetric

§ Might be better modeled by two modes:
§ Mode for the case that the signal returns directly
§ Mode for the case that the signals returns after reflections

§ Stereo vision system might not correlate images
§ Results that make no sense at all

Simplifying Assumptions
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§ How do we combine a series of uncertain 
measurements?
§ (Basically the usual case for sensing)

§ Propagation of uncertainty (or propagation 
of error)

§ Fuse a sequence of readings into a single 
value

Error Propagation
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§ The effect of variables’ uncertainty on the 
uncertainty of a function that depends on them.

Absolute error Δx

§ Error on some quantity, Δx, is given as

Standard deviation: the positive square root 
of variance, σ2

§ With a probability distribution, can find 
confidence limits
§ How sure are we of our estimate?

Error Propagation Law
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§ With a probability 
distribution, can find 
confidence limits

§ Example: 
§ The 68% confidence limits for 

a one-dimensional variable in 
a normal distribution are ±
one std. dev. from the value

§ Approximately a 68% 
probability that the true value 
lies in the region x± σ

Confidence Limits
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§ Error propagation in a multi-input multi-output 
system with n inputs and m outputs.

The Error Propagation Law

X1

Xi

Xn

System
…

…

Y1

Yi

Ym

…
…
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§ Try extracting a line based 
on point measurements 
with uncertainties.

§ The model parameters ri
(length of the perpendicular) 
and qi (its angle to the
abscissa) describe a 
line uniquely.

§ The question:
§ What is the uncertainty of the extracted line 

knowing the uncertainties of the measurement 
points that contribute to it?

Error Propagation Law

α

r

xi = (ρi, θi)
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§ One-dimensional case 
of an error propagation 
problem

§ The output covariance
matrix CY is given by 
the error propagation 
law:

§ where
§ CX: covariance matrix 

representing the input 
uncertainties

§ CY: covariance matrix 
representing the 
propagated uncertainties 
for the outputs.

§ FX: is the Jacobian matrix 
defined as:

§ which is the transposed of 
the gradient of f(X).

The Error Propagation Law

43


