

1

Motivation

- Raw perceptual data: huge to process, store*
- Compact features require less storage (e.g. lines, planes)
- Provides rich and accurate information
- For some tasks!
- Basis for high level features (e.g. more abstract features, objects)

3

7

What's a Feature?

- Raw data is cumbersome, huge, and redundant

- Don't need every pixel or reading
- But what data do you need?

- Getting some subset is feature extraction
. "Features" can be combinations of traits, the result of math operations, and many other things

2

Environment Mapping

- Features for Localization
- Compact map 26 bytes / m2
- Multi-hypothesis tracking
- Topological map for global planning
- Raw data for local planning and obstacle avoidance

4

Plane Extraction: Motivation

- Map of the ASL hallway built using orthogonal planes constructed from line segments

8

9

Line Extraction

- Raw data: any depth sensor
- In practice, mostly laser range finders
- Dense and accurate range measurements
- High sampling rate, high angular resolution
- Good range distance and resolution.
- Why line segments?
- The simplest geometric primitive
- Compact, requires almost no storage
- Provides rich and accurate information
- Matches indoor human environments, e.g., offices

Line Extraction: The Problem

- Three main problems:
- How many lines should we find?
- Which points belong to what line?
- This problem is called SEGMENTATION
- Given points that belong to a line, how to estimate parameters?
- This problem is called LINE FITTING

Line Extraction

- Algorithms:
- Split and merge
- Linear regression
- RANSAC
- Hough-Transform

10

Line Extraction: The Problem

- Scan point in polar form: $\left(\varrho_{i}, \theta_{i}\right)$
- Assumptions:
- Gaussian noise* in $[0, \sigma]$ for distance measurement ϱ
- Negligible angular uncertainty
- Line model in polar form:
- $x \cos \alpha+y \sin \alpha=\mathrm{r}$
- $-\pi<\alpha \leq \pi$
- $\mathrm{r} \geq 0$

2

Split-and-Merge

- The most popular algorithm
- Originated from computer vision.
- A recursive procedure of fitting and splitting.
- A slightly different version, called Iterative-End-Point-Fit, simply connects the end points for line fitting.

15

17

RANSAC Algorithm

- RANSAC is an iterative method
- Drawback: A nondeterministic method, so results are different between runs
- Probability to find a line without outliers increases as more iterations are used

16

RANSAC Algorithm

- Random Sample Consensus ("Ran-sack")
- General, robust algorithm to fit models in the presence of outliers
- Good tool when goal is to identify points that satisfy a mathematical model or function (like a line or plane)
- Typical applications in robotics
- Line extraction from 2D range data
- Plane extraction from 3D range data
- Structure from motion

18

Algorithm 3: RANSAC

Algorithm 4: RANSAC
1. Initial: let A be a set of N points
2. repeat
3. Randomly select a sample of 2 points from A
4. Fit a line through the 2 points
5. Compute the distances of all other points to this line
6. Construct the inlier set (i.e. count the number of points with distance to the line $<d$)
7. Store these inliers
8. until Maximum number of iterations k reached
9. The set with the maximum number of inliers is chosen as a solution to the problem

21

23

22

24

26

27

How Many Iterations?

- How many iterations does RANSAC need?
- Can't know in advance if observed set contains maximum number of inliers
- Ideal: check all possible combinations of 2 points
- $N(N-1) / 2$ (for a line) - infeasible if N is too large
- Do not need to check all combinations - just a subset if we have a rough estimate of the percentage of inliers in our dataset
- This can be done in a probabilistic way

Extraction of Planar Features

- Goal: extract planar features from a dense point cloud

28

RANSAC Iterations

- Let w be fraction of inliners: w= number of inliers / N
- N is the total number of points.
- w is also the probability of selecting an inlier
- $p=$ probability of finding a set of points without outliers
- w^{2} : probability that both points are inliers
- 1-w²: probability that at least one of these two points is an outlier

$$
k=\frac{\log (1-p)}{\log \left(1-w^{2}\right)}
$$

RANSAC for Planes

| threshold $=0.05 ; ~ / / ~ p r e d e f i n e d ~ t h r e s h o l d ~ i n ~[m] ~$ | |
| :--- | :--- | :--- |
| $m=100 ; ~ / / ~ p r e d e f i n e d ~ t h e ~ n u m b e r ~ o f ~ r a n s a c ~ i t e r a t i o n s ~$ | pseudo code | for every cell ci do for m ransac-iterations

randomly choose 3 different points p1,p2,p3 from points
contained in cel1 ci; calculate plane p, i.e. normal n and orth. distance to
origin d defined by $\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3$; $\mathrm{np}=0$;

cal cul ate orthogona
if (s < threshold)
endif
/f maximize the number of points close to the plan
npmax $=n p ; / /$ the number of points close to the plane
pbest $=\mathrm{p} ; / /$ this is the found best plane

34

35

Experimental Results

36

