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Mapping and SLAM:  
A (High-Level) Survey

Sebastian Thrun, 2002
Original presentation: David Black-Schaffer, Kristof Richmond

Used with many, many thanks to authors
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§ Building a model of the robot’s environment
§ Based on sensor data obtained in that environment

§ Many different environment representations 
exist

§ Mapping means constructing one
§ Based on sensor data
§ Doesn’t have to be geometric

What is Mapping?
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§ By hand?
§ Slow, expensive and imprecise

§ Automatically: Mapping
§ The robot learns its environment

§ Can cope with dynamically 
changing environment

§ Map is built from sensors that will be used to 
navigate

How to Get a Map?

123.5

3
4

Basic Mapping Task

https://www.youtube.com/watch?v=eAbF3QBGwzA
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§ Metric Mapping
§ Geometric representations
§ Occupancy Grids
§ Larger maps much more computationally intensive

§ Topological Mapping
§ Milestones with connections
§ Require navigation information
§ Hard to scale

Historical Overview
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§ Measurement noise
§ Sensor and position noise are not independent

§ Map size
§ High resolution maps can be very large

§ Correspondence
§ Do multiple measurements at different times 

correspond to the same object?
§ Loop closure is a subset of this

§ Dynamic environments
§ Many algorithms assume a static environment

The Problems
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§ A way to incorporate sensed information into 
world model

§ Sufficient information for navigation
§ Estimating position, path planning, obstacle 

avoidance, …

§ Correctness

§ Predictability
§ Most environments are a mixture of predictable and 

unpredictable features

Basic Mapping Requirements
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§ Map Maintenance: keeping track of changes in 
the environment

§ Often uses a measure of belief of each feature

§ If localizing: did the world change, or are you 
lost?

Challenges: Maintenance

?
example:  

disappearing 
cupboard
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§ Small local error accumulates

§ This is usually irrelevant for navigation

§ When closing loops, global error does matter

Challenges: Cyclic Environments

Courtesy of Sebastian Thrun
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Dynamic Environments

§ Dynamic changes require 
continuous (re-)mapping

§ High-level features help if 
you can get them
§ Humans are more dynamic 

map features than walls
§ Can also learn that certain 

things are dynamic over time ?

navigate around 
cupboard…
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§ Algorithms are:
§ Robust for static, structured, and small environments
§ Probabilistic
§ Only ok with correspondence problem
§ Incremental or multi-pass

§ Incremental algorithms only need one “pass” through data, 
and can possibly be run in real time

§ Continuing areas
§ Dynamic environments
§ Semantic labeling of environments
§ Planning exploration paths of unknown 

environments

Current State of Mapping

15
16

§ Noise in commands and sensors
§ Commands are not executed exactly 

(e.g., slippage leads to odometry errors)
§ Sensors noise due to real world

(e.g., angle of incidence and scattering)

§ Noise is not statistically independent
§ Control errors accumulate with time/distance
§ Can’t “average out” noise

Why Probabilistic Mapping?

basically 
everything 
we’ve ever 
covered 
about error  
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Command Noise

§ Odometry Errors: heading and distance measurements 
accumulate errors with time
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SLAM

§ SLAM
§ Simultaneous Localization And Mapping
§ Figure out where we are and what our world looks 

like at the same time

§ Localization
§ Where are we?
§ Position error accumulates with movement

§ Mapping
§ What does the environment look like?
§ Sensor error (not independent of position error)
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§ Can you do mapping without localization?
§ Sort of.

§ Gathering environment data doesn’t depend on 
knowing where you are, but…

§ If you don’t track robot’s location, the relative 
position of different sensor readings is harder to 
calculate

§ Some problems (e.g., loop closure) may be 
impossible

Mapping ≠ SLAM?

20
22

What are we trying to do?

www.kalmanfilter.net
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What are we trying to do?

Whatever 
we’re 
estimating

www.kalmanfilter.net
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§ p(x | d) =  h p(d | x) p(x)*

§ p(x | d) is the probability of (the map) x being true 
given the (sensor) measurement d

§ p(d | x) is the probabeingbility of the (sensor) 
measurement being d given (an object at) x

§ p(x) is the prior probability (of the map)

Bayes Rule

* h = normalization constant
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Bayes Rule over Time

§ Notation
§ s = pose of robot (x, y, Q)
§ u = command given to robot
§ z = sensor measurement
§ m = map

§ All are functions of time
§ zt = sensor measurements at time t
§ zt = all sensor measurements up to time t
§ (same for s, u, and m)
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Bayes Filter

§ Probability of a location (pose) and a map, 
given sensor readings and command.

§ p(zt | st, m) is the sensor model

§ p(st | ut, st-1) is the motion model

§ p(st-1, m | zt-1, ut-1) is probability we were actually
where we thought we were last timestep

Sensor and motion models are usually static

€ 

p(st ,m | z
t ,ut ) =η ⋅ p(zt | st ,m) p(st | ut , st−1)p(st−1,m | z

t−1,ut−1)dst−1∫

s: robot configuration (pose)
u: command
z: sensor reading
m: map
☐t /☐t: value at/up to time t
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Kalman EM Occupancy 
Grids

Dogma

Representation Landmark 
Locations

Point 
Obstacles

Occupancy 
Grids

Occupancy 
Grids

Incremental YES NO YES NO

Requires Poses NO NO YES YES

Handles 
Correspondence NO YES YES YES

Dynamic 
Environments limited NO limited YES

Mapping Methods
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Monte Carlo Localization

§ Probabilistic
1. Start with a uniform distribution of possible poses

(x, y, Q)
2. Compute the probability of each pose given current 

sensor data and a map
3. Normalize probabilities

§ Throw out low probability points
§ Blur current points (we never know exactly where 

we are)

§ Performance: excellent!
§ Need non-symmetric geometries
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Monte Carlo Localization

Thrun, Sebastian. “Animation of Monte Carlo Localization using laser range finders”
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Monte Carlo SLAM

Thrun, Sebastian. “Animation: Online mapping with Monte Carlo Localization.”
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§ Find most likely map (and poses)

1. Expectation step: 

§ Calculate probabilities of robot poses for 
current guess of map

2. Maximization step:

§ Calculate single most likely map for 
distribution of robot poses

§ Iterate

Expectation Maximization (EM)
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EM Performance

§ Pros:
§ Resolves correspondences

§ Cons:
§ Non-incremental
§ No posterior probabilities for map
§ Slow
§ Greedy

§ Improvements: Hybrid approaches
§ Incremental computation
§ Maintain a few possible robot poses
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§ Prediction algorithm that handles uncertainty
§ Process (actuation) uncertainty
§ Measurement (sensor) uncertainty

Kalman filters

www.kalmanfilter.net
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§ Core idea: predict where we should be, take 
readings, then update our estimate of where 
we are

§ We need to take prior states into consideration
§ ALL of them?!

§ But, we can condition on the previous state
§ Which is conditioned on the state before that, …

§ State Update Equation:

Kalman filter (SLAM)
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1. Position prediction:
§ Position at time step k+1 is predicted based on old location (k) 

and its movement

2. Observe: sense the new location at k+1

3. Measurement prediction:
§ Use the predicted robot position and the map to generate 

multiple predicted observations

§ Given where we might be, what do we expect to see?

4. Matching: Map from all predicted observations to all 
observations

5. Estimate location: keep best n and continue

KF core idea (2)
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§ Pros:
§ Full (Gaussian) posterior probabilities
§ Incremental
§ Good convergence

§ Cons:
§ Limited model
§ Correspondence problem
§ Limited map size

§ Many improvements exist! 

Kalman Filter Performance
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Particle Filter SLAM

https://www.youtube.com/watch?v=khSrWtB0Xik
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Occupancy Grids

§ Impose grid on space to be mapped

§ Find inverse sensor model

p(mx,y|zt,st)

§ Update odds that grid cells are occupied
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Occupancy Grid (simple)

https://www.youtube.com/watch?v=zOj4s9TEmg8
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Occupancy Grid (real)

https://www.youtube.com/watch?v=iD47JWVqTCk
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Occupancy Grids

§ Pros
§ Simple
§ Accurate
§ Incremental

§ Cons
§ Require known poses
§ Independence 

assumptions

§ Extensions: 
Object Maps
§ Reduced memory 

requirements
§ Better for dynamic 

environments
§ Limited by available 

object models
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Object Maps
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Dynamic Environments

§ Kalman filters

§ Decaying occupancy grids

§ Dogma
§ Dynamic occupancy grid mapping algorithm
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A Real Example

https://www.youtube.com/watch?v=o1GSQanY-Do

Using a Laser and 
an RGB-D Sensor
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§ Turning percepts (sensor readings) into a 
model of an environment (a map)
§ Maps come in many forms
§ Must have sufficient information for navigation 

tasks
§ Estimating position, path planning, obstacle 

avoidance, …

§ Many challenges
§ Difficult environments: cycles, dynamism, …
§ Sensor noise and precision
§ Actuator noise
§ Labeling environment

Mapping
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§ Many algorithms exist

§ All modern approaches are probabilistic

§ Many are particle filter based

§ Usually SLAM is involved
§ Doesn’t strictly have to be

§ Different approaches address different 
challenges

Approaches
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