Transformation Exercises: DenavitHartenberg Method

Some images and exercises from:
Introduction to Autonomous Mobile Robots, Siegwart, Nourbakhsh, 2011
Robot Dynamics and Control Second Edition, Spong, Hutchinson, Vidyasagar, 2004

Review

- Given two frames of reference, transformations convert configurations (position + orientation) from one to the other.
- A robot sees a thing. Where is the thing in the world?
- There's a thing in the world. Where is it wrt. the robot?
- A robot moves around. Where is it in the world?
- We can do this with translation/rotation matrices, multiplied by configuration.
- $\xi_{W}={ }_{R}^{W} T \times \xi_{R}$
- Or, faster with the Denavit-Hartenberg method.

DH review: frames

- z axis is axis of motion
- Rotation around z for revolute
- Translation along z for prismatic
- x_{i} axis orthogonal to z_{i} and z_{i-1}
- y axis: right-hand rule
- Fingers point $+x$
- Thumb points $+z$
- Palm faces $+y$
- x_{i} axis must
intersect z_{i-1} axis
- Which may mean translating origin

DH review: parameters

- $\mathbf{a}_{\mathbf{i}-1}$: link length distance $\mathrm{Z}_{\mathrm{i}-1} \leftrightarrows \mathrm{Z}_{\mathrm{i}}$ along X_{i}
- $\alpha_{\mathrm{i}-1}$: link twist angle between $\mathrm{Z}_{\mathrm{i}-1}$ $\leftrightarrows \mathrm{Z}_{\mathrm{i}}$ around X_{i}
- \mathbf{d}_{i} : link offset distance $\mathrm{X}_{\mathrm{i}-1}$ to X_{i} along Z_{i}
- $\boldsymbol{\theta}_{\mathbf{i}}$: joint angle angle between $\mathbf{X}_{\mathrm{i}-1}$ and X_{i} around Z_{i}

Link $i-1$

Review: Transformation matrices

$$
\begin{gathered}
T_{x}(\theta)=\left[\begin{array}{cccc}
1 & 0 & 0 & x \\
0 & \cos \theta & -\sin \theta & y \\
0 & \sin \theta & \cos \theta & z \\
0 & 0 & 0 & 1
\end{array}\right] \quad T_{y}(\theta)=\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & \bar{x} \\
0 & 1 & 0 & y \\
-\sin \theta & 0 & \cos \theta & z \\
0 & 0 & 0 & 1
\end{array}\right] \\
T_{z}(\theta)=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & x \\
\sin \theta & \cos \theta & 0 & y \\
0 & 0 & 1 & z \\
0 & 0 & 0 & 1
\end{array}\right] \\
R_{i}^{i-1}=\left[\begin{array}{cccc}
\cos \theta_{i} & -\sin \theta_{i} \cos \alpha_{i, i+1} & \sin \theta_{i} \sin \alpha_{i, i+1} & a_{i, i+1} \cos \theta_{i} \\
\sin \theta_{i} & \cos \theta_{i} \cos \alpha_{i, i+1} & -\cos \theta_{i} \sin \alpha_{i, i+1} & a_{i, i+1} \sin \theta_{i} \\
0 & \sin \alpha_{i, i+1} & \cos \alpha_{i, i+1} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Ex.1: Planar elbow manipulatoı

- Define the axes according to the DH rules.

> How many frames of reference do you need?

One per joint, so 2.

- Then, draw lines and arcs for a and θ.
- Why not α and d ?

Exercise 1

Exercise 1

- Give the DH parameters.

First, what's the table?

Link	a_{i}	α_{i}	d_{i}	θ_{i}

What are the values?
Planar arm makes
params simpler, so...

Link	a_{i}	α_{i}	d_{i}	θ_{i}
1	a_{1}	0	0	θ_{1}^{*}
2	a_{2}	0	0	θ_{2}^{*}

Exercise 1

- Give the final transformation matrix.

Exercise 1

- Give the final transformation matrix.

Link	a_{i}	α_{i}	d_{i}	θ_{i}
1	a_{1}	0	0	θ_{1}^{*}
2	a_{2}	0	0	θ_{2}^{*}

\sin \theta_{i} \& \cos \theta_{i} \cos \alpha_{i, i+1} \& -\cos \theta_{i} \sin \alpha_{i, i+1} \& a_{i, i+1} \sin \theta_{i}

0 \& \sin \alpha_{i, i+1} \& \cos \alpha_{i, i+1} \& d_{i}

0 \& 0 \& 0 \& 1\end{array}\right]\)

- Plugging in...

$$
\begin{aligned}
& T_{1}^{0}=\left[\begin{array}{cccc}
\cos \theta_{1} & -\sin \theta_{1} & 0 & a_{0,1} \cos \theta_{1} \\
\sin \theta_{1} & \cos \theta_{1} & 0 & a_{0,1} \sin \theta_{1} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& T_{2}^{1}=\left[\begin{array}{cccc}
\cos \theta_{2} & -\sin \theta_{2} & 0 & a_{1,2} \cos \theta_{2} \\
\sin \theta_{2} & \cos \theta_{2} & 0 & a_{1,2} \sin \theta_{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Exercise 1

- Give the final transformation matrix.

Link	a_{i}	α_{i}	d_{i}	θ_{i}
1	a_{1}	0	0	θ_{1}^{*}
2	a_{2}	0	0	θ_{2}^{*}

\sin \theta_{i} \& \cos \theta_{i} \cos \alpha_{i, i+1} \& -\cos \theta_{i} \sin \alpha_{i, i+1} \& a_{i, i+1} \sin \theta_{i}

0 \& \sin \alpha_{i, i+1} \& \cos \alpha_{i, i+1} \& d_{i}

0 \& 0 \& 0 \& 1\end{array}\right]\)

- Plugging in...

$$
T_{2}^{0}=T_{1}^{0} \times T_{2}^{1}=\left[\begin{array}{cccc}
\cos \left(\theta_{1}+\theta_{2}\right) & -\sin \left(\theta_{1}+\theta_{2}\right) & 0 & a_{0,1} \cos \theta_{1}+a_{1,2} \cos \left(\theta_{1}+\theta_{2}\right) \\
\sin \left(\theta_{1}+\theta_{2}\right) & \cos \left(\theta_{1}+\theta_{2}\right) & 0 & a_{0,1} \sin \theta_{1}+a_{1,2} \sin \left(\theta_{1}+\theta_{2}\right) \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Exercise 1

- This is always the parameters and transform for a planar elbow manipulator.

$$
\left[\begin{array}{cccc}
\cos \left(\theta_{1}+\theta_{2}\right) & -\sin \left(\theta_{1}+\theta_{2}\right) & 0 & a_{0,1} \cos \theta_{1}+a_{1,2} \cos \left(\theta_{1}+\theta_{2}\right) \\
\sin \left(\theta_{1}+\theta_{2}\right) & \cos \left(\theta_{1}+\theta_{2}\right) & 0 & a_{0,1} \sin \theta_{1}+a_{1,2} \sin \left(\theta_{1}+\theta_{2}\right) \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Similar derivations can be done for cylindrical arms, spherical arms, etc.
- This is why we name configurations.
- If you know these, you can subdivide an arm.

Discussion

- Could you do the same thing using a sequence of $x / y / z$ rotations and translations?
- How many steps would it take?
- Could you do the same thing given a word problem about an arm in the world?
- Given numbers?
- As a derivation?
- How many joints would you max out at?
- Directly?
- Using DH parameters?

Exercise 2:

1. What is the complete, derived transformation matrix for a spherical wrist?
a. What are the frames?
b. What are the

DH parameters?
c. What are the individual transformation matrices?
d. What's the final transformation matrix?
2. What is the final transformation matrix for this wrist, without using the DH method? (It's the same)

- This is just a sequence of rotations - see Spong.

Exercise 3:

- What is the complete, derived transformation matrix for a 3-link cylindrical robot?
a. What are the frames?
b. What are the DH parameters?
c. What are the individual transformation matrices?
d. What's the final transformation matrix?
e. What is the final transformation matrix for this wrist, derived without using the DH method?
- See Spong.

Exercise 3:

a. What are the frames?

Exercise 3:

a. What are the frames?

- Joint 0:
- z_{0} is along axis of motion
- Origin $0\left(O_{0}\right)$ is arbitrary, but makes sense
- x_{0} is normal to the page.

Exercise 3:

a. What are the frames?

- Joint 1 :
- z_{1} is along axis of motion
- Origin $0\left(O_{1}\right)$ is easy, because z_{0} and z_{1} are the same (no origin movement necessary)
- x_{1} Is normal to the page currently (but not when joint 0 moves!)

Exercise 3:

a. What are the frames?

- Joint 2 :
- z_{2} is along axis of motion
- x_{2} is chosen parallel to x_{1} so that θ_{2} is zero.
- Joint 3:
- Chosen as shown.

Exercise 3:

b. What are the DH parameters?

Link	a_{i}	α_{i}	d_{i}	θ_{i}
1	0	0	d_{1}	θ_{1}
2	0	-90	d_{2}	0
3	0	0	d_{3}	0

Exercise 3:

c. What are the

- $c=$ cosine, $s=\sin$

$$
\begin{aligned}
& { }^{0} T_{1}=\left[\begin{array}{cccc}
c_{1} & -s_{1} & 0 & 0 \\
s_{1} & c_{1} & 0 & 0 \\
0 & 0 & 1 & d_{1} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& { }^{1} T_{2}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & d_{2} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

individual transformation matrices?

$$
{ }^{1}{ }^{2} T_{3}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{3} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Exercise 3:

d. What's the final transformation matrix?

$$
{ }^{0} T_{3}=\left[\begin{array}{cccc}
c_{1} & 0 & -s_{1} & -s_{1} d_{3} \\
s_{1} & 0 & c_{1} & c_{1} d_{3} \\
0 & -1 & 0 & d_{1}+d_{2} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Exercise 4:

- What is the complete, derived transformation matrix for this arm? (any approach)

- This is exercise 3 and exercise 2 stuck together, so you can just multiply your transforms for those!

