Kinematics: Solving Sequences Manipulators \& DH parameters

Many slides, graphics, and ideas adapted (with thanks!) from:
Siegwart, Nourbakhsh and Scaramuzza, Autonomous Mobile Robots
Renata Melamud, An Introduction to Robot Kinematio ', GiMU
Rick Parent, Computer Animation, LState
Steve Rotenberg, Computer Animation, UCSD
Angela Sodemann, www.youtube.com/watch?v=/VjFhNv2N8o, ASU

Review: Kinematics

- Goal: Figure out where robot or end effector is in the global (world) frame of reference
- Method: Treat robot and world as
 having different frames of reference that we convert between
- Use matrices that represent complete information about world and robot
- Where it is (location of the origin)
- Which way axes are pointed (orientation)

- Why: so we can put the robot where we want it

Review: Manip. Kinematics

- Goal: Figure out where end effector is
- Method: Treat each joint as having its own independent frame that moves with respect to the previous one

- Joint 1 moves wrt. the world
- Joint 2 moves wrt. joint 1, etc.
- Then, each transform from joint i to joint $\mathrm{i}+1$ is a single rotation or translation
- Each joint has one degree of freedom
- Multi-axis joints are treated as 2+ joints connected by zero-length links

Review: Rotation

- Any frame of reference can be represented by:
- 3 numbers for planar movement: (x, y, θ)
- 6 numbers for 3D: $(x, y, z, \phi, \theta, \psi)$ (roll/pitch/yaw)
- Any rotation can be broken down into single rotations around one axis each
- We transform rotations between frames by multiplying by a rotation matrix
- Derived trigonometrically

$$
\left.R_{X}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] \quad R_{Y}=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] \quad R_{Z}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\right)
$$

Review: Translation

- Any frame of reference can be represented by:
- 3 numbers for planar movement: (x, y, θ)
- 6 numbers for 3D: $(x, y, z, \phi, \theta, \psi)$
- Any translation (movement) can be broken down into single moves in one axis each
- We transform translations by adding location information to the matrices, as follows

$$
\left[\begin{array}{llll}
1 & 0 & x \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & x \\
0 & 1 & 0 & y \\
0 & 0 & 1 & z \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(we'll do rotation
and translation exercises in class, as well as DH)

Review: Describing A Manipulator

- Arm made up of links in a chain
- Joints each have $\langle x, y, z>$ and roll/pitch/yaw
- So, each joint has a coordinate system
- We label links, joints, and angles

Review: Kinematics

- You'll sometimes see vector $\boldsymbol{\Phi}$ to represent the array of M joint values:

$$
\boldsymbol{\Phi}=\left[\begin{array}{llll}
\phi_{1} & \phi_{2} & \ldots & \phi_{M}
\end{array}\right]
$$

- We sometimes use vector e to represent array of N values describing end effector
- Position/orientation
- E.g., configuration

$$
\mathbf{e}=\left[\begin{array}{llll}
e_{1} & e_{2} & \ldots & e_{N}
\end{array}\right]
$$

- Example:
- For end effector position and orientation, e would contain 6 DOFs: 3 translations and 3 rotations
- If we only need position, e would contain 3 translatic. β)

Review: Forward \& Inverse

Joint space (robot space - previously R)

$$
\theta_{1}, \theta_{2}, \ldots, \theta_{n}
$$

This is what we can directly control

Cartesian space (global space - previously I)

$$
(\mathrm{x}, \mathrm{y}, \mathrm{z}), \mathrm{r} / \mathrm{p} / \mathrm{y}
$$

This is where things in the robot's environment are

Forward: i \rightarrow i-1

- We are we looking for transformation matrix (or transform) T that converts between frame i and frame i-1:

$$
\mathrm{T}_{\mathrm{i}}^{\mathrm{i}-1} \quad\left(\text { or }{ }_{i}^{\mathrm{i}-\mathrm{T}} \mathrm{~T}\right) \quad\left(\text { or }{ }^{\mathrm{i}-1} \mathrm{~T}_{\mathrm{i}}\right)
$$

- Determine position and orientation of endeffector as function of displacements in joints

Forward Kinematics and IK

- Joint angles \leftrightarrows end effector configuration in I
- Can string together rotations with multiplication - So, can get end effector rotation by ?
- Finding rotation from [joint i-1 to i$] \times$ [joint i to $\mathrm{i}+1] \times \ldots$

$$
R_{2}^{0}=R_{1}^{0} R_{2}^{1}
$$

- Rotation of end effector frame, relative to base frame

joint i

Describing A Manipulator

- But where do these frames come from?
- An arm is made up of links in a chain
- How to describe each link?
- Many choices exist
- DH parameters widely used
- Also: quaternions, Euler angles, ...
joint i+1
- Denavit-Hartenberg parameters
- DH parameters let you describe each ${ }^{\text {t- } \mathrm{i}} \mathrm{T}_{\mathrm{i}}$ with only 4 values
- $\mathrm{a}_{\mathrm{i}-1}, \alpha_{\mathrm{i}-1}, \mathrm{~d}_{\mathrm{i}}, \theta_{2}$

Denavit-Hartenberg Method

- Efficient way of finding transformation matrices

1. Set frames for all joints

- This is actually the tricky part

2. Calculate all DH parameters from frames

* 4 DH parameters (not 6!) define position/orientation*

3. Popul * How is this possible?
4. Popul We already have some constraints on joints i.e., that they're connected by a rigid link that can rotate or displace (but not both)
5. Multipry am rotate or displace (but not bot

$$
. \quad 0-1 \times 1-2 \times 2-3 \times \ldots
$$

Defining Frames for Joints

- What's the frame of reference for a joint?
- Actually, completely flexible
- We usually choose:
- 1 axis through the center of rotation/direction of displacement
- 2 more perpendicular to that
- Which can be any orientation!
- We can move the origin
- P is no longer $<0,0,0>$
- To use DH method, choose frames carefully

1. Choose Frames for DH

- z axis must be axis of motion
- Rotation around z for revolute
- Translation along z for prismatic
- x_{i} axis orthogonal to z_{i} and z_{i-1}
- There's always a line that satisfies this
- y axis must follow the right-hand rule
- Fingers point $+x$
- Thumb points $+z$
- Palm faces $+y$
- x_{i} axis must intersect z_{i-1} axis
- Which may mean translating origin

2. Find DH Parameters

Given frames (from 1):

$\mathrm{a}_{\mathrm{i}-1}$: link length - distance $\mathrm{Z}_{\mathrm{i}-1} \leftrightarrows \mathrm{Z}_{\mathrm{i}}$ along X_{i}
$\alpha_{\mathrm{i}-1}$: link twist - angle $\mathrm{Z}_{\mathrm{i}-1} \leftrightarrows \mathrm{Z}_{\mathrm{i}}$ around X_{i}
d_{i} : link offset - distance $\mathrm{X}_{\mathrm{i}-1}$ to X_{i} along Z_{i}
θ_{i} : joint angle - angle X_{i-1} and X_{i} around Z_{i}

3. DH Parameter Table

Given parameters:

- Create a parameter table
- \# of rows = (\# of frames) - 1
- Columns $=4$ (always) $<$ DH parameters θ, α, a, d

	$\boldsymbol{\theta}$	$\boldsymbol{\alpha}$	\mathbf{a}	\mathbf{d}
frame $\mathbf{0 - 1}$	θ_{0-1}	α_{0-1}	a_{0-1}	$\mathrm{~d}_{0-1}$
frame $\mathbf{1 - 2}$	θ_{1-2}	α_{1-2}	a_{1-2}	$\mathrm{~d}_{1-2}$
frame 2-3	\ldots	\ldots	\ldots	\ldots

4. Make Transform Matrix

Given parameter table:

- Fill DH transformation matrix* for each transition:

$$
R_{i}^{i-1}=\left[\begin{array}{cccc}
\cos \theta_{i} & -\sin \theta_{i} \cos \alpha_{i, i+1} & \sin \theta_{i} \sin \alpha_{i, i+1} & a_{i, i+1} \cos \theta_{i} \\
\sin \theta_{i} & \cos \theta_{i} \cos \alpha_{i, i+1} & -\cos \theta_{i} \sin \alpha_{i, i+1} & a_{i, i+1} \sin \theta_{i} \\
0 & \sin \alpha_{i, i+1} & \cos \alpha_{i, i+1} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- And multiply (e.g., $R_{2}^{0}=R_{1}^{0} R_{2}^{1}$)
- R_{2}^{0} is the same matrix as would be found by other methods. DH is fast and efficient.

Transformation ito i-1

$\mathbf{a}_{\mathbf{i}-1}$: distance $\mathbf{Z}_{\mathbf{i}-1}$ and $\mathbf{Z}_{\mathbf{i}}$ along $\left.\mathbf{X}_{\mathbf{i}}\right\}$ together: screw α_{i-1} : angle $\mathbf{Z}_{\mathbf{i}-1}$ and $\mathbf{Z}_{\mathbf{i}}$ around $\left.\mathbf{X}_{\mathbf{i}}\right\}$ displacement

$$
\left[X_{i}\right]=\operatorname{Trans}_{x_{i}}\left(a_{i, i+1}\right) \operatorname{Rot}_{x_{i}}\left(a_{i, i+1}\right)
$$

$\mathbf{d}_{\mathbf{i}}$: distance $\mathbf{X}_{\mathbf{i}-1}$ to $\mathbf{X}_{\mathbf{i}}$ along $\left.\mathbf{Z}_{\mathbf{i}}\right\}$ together: screw
$\boldsymbol{\theta}_{\mathbf{2}}$: angle $\mathbf{X}_{\mathrm{i}-1}$ and $\mathbf{X}_{\mathbf{i}}$ around $\left.\mathbf{Z}_{\mathbf{i}}\right\}$ displacement

$$
\left[Z_{i}\right]=\operatorname{Trans}_{Z_{i}}\left(a_{i, i+1}\right) \operatorname{Rot}_{z_{i}}\left(a_{i, i+1}\right)
$$

- Coordinate transformation:

$$
{ }_{i}^{i-1} T=\left[Z_{i}\right]\left[X_{i}\right]=\operatorname{Trans}_{z_{i}}\left(d_{i}\right) \operatorname{Rot}_{z_{i}}\left(\theta_{i}\right) \operatorname{Trans}_{x_{i}}\left(a_{i, i+1}\right) \operatorname{Rot}_{x_{i}}\left(a_{i, i+1}\right)
$$

Transformation i to i-1

$\operatorname{Trans}_{z_{i}}\left(d_{i}\right)=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{i} \\ 0 & 0 & 0 & 1\end{array}\right]$

$$
\operatorname{Rot}_{x_{i}}\left(\alpha_{i, i+1}\right)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \alpha_{i, i+1} & -\sin \alpha_{i, i+1} & 0 \\
0 & \sin \alpha_{i, i+1} & \cos \alpha_{i, i+1} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$\operatorname{Trans}_{x_{i}}\left(a_{i, i+1}\right)=\left[\begin{array}{cccc}1 & 0 & 0 & a_{i, i+1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \quad \operatorname{Rot}_{z_{i}}\left(\theta_{i}\right)=\left[\begin{array}{cccc}\cos \theta_{i} & -\sin \theta_{i} & 0 & 0 \\ \sin \theta_{i} & \cos \theta_{i} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
Transformation in DH:

$$
R_{i}^{i-1}=\left[\begin{array}{cccc}
\cos \theta_{i} & -\sin \theta_{i} \cos \alpha_{i, i+1} & \sin \theta_{i} \sin \alpha_{i, i+1} & a_{i, i+1} \cos \theta_{i} \\
\sin \theta_{i} & \cos \theta_{i} \cos \alpha_{i, i+1} & -\cos \theta_{i} \sin \alpha_{i, i+1} & a_{i, i+1} \sin \theta_{i} \\
0 & \sin \alpha_{i, i+1} & \cos \alpha_{i, i+1} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Exercises

Exercise 1

- Homogeneous transformations translate and rotate simultaneously.
I. Rotates 90°

2. Moves forward 5
3. Rotates -90
4. Moves forward 5
5. Rotates -90
6. Moves forward 3

Exercise 1

$$
{ }_{1}^{0} T=
$$

1. Rotates 90°
2. Moves forward 5
3. Rotates -90
4. Moves forward 5
5. Rotates -90
6. Moves forward 3

Exercise 1

${ }_{1}^{0} T=$

1. Rotates 90°
2. Moves forward 5
3. Rotates -90
4. Moves forward 5
5. Rotates -90
6. Moves forward 3

Exercise 1

${ }_{{ }_{1}}=[$
I. Rotates 90°
2. Moves forward 5
3. Rotates -90
4. Moves forward 5
5. Rotates -90
6. Moves forward 3

Exercise 1

$$
{ }_{1}^{0} T=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & x \\
\sin \theta & \cos \theta & y \\
0 & 0 & 1
\end{array}\right]
$$

1. Rotates 90°
2. Moves forward 5
3. Rotates -90
4. Moves forward 5
5. Rotates -90
6. Moves forward 3

Exercise 1

$$
{ }_{1}^{0} T=\left[\begin{array}{ccc}
\cos \pi / 2 & -\sin \pi / 2 & 0 \\
\sin \pi / 2 & \cos \pi / 2 & 5 \\
0 & 0 & 1
\end{array}\right]
$$

I. Rotates 90°
2. Moves forward 5
3. Rotates -90
4. Moves forward 5
5. Rotates -90
6. Moves forward 3

Exercise 1

$$
{ }_{1}^{0} T=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 5 \\
0 & 0 & 1
\end{array}\right]
$$

1. Rotates 90°
2. Moves forward 5
3. Rotates -90
4. Moves forward 5
5. Rotates -90
6. Moves forward 3

Exercise 1

$$
{ }_{1}^{0} T=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 5 \\
0 & 0 & 1
\end{array}\right]
$$

1. Rotates 90°
2. Moves forward 5
3. Rotates -90
4. Moves forward 5
5. Rotates -90
6. Moves forward 3

Exercise 1

$$
{ }_{1}^{0} T=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 5 \\
0 & 0 & 1
\end{array}\right]
$$

1. Rotates 90°
2. Moves forward 5
3. Rotates -90
4. Moves forward 5
5. Rotates -90
6. Moves forward 3

Exercise 1

$$
{ }_{1}^{0} T=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 5 \\
0 & 0 & 1
\end{array}\right] \quad{ }_{2}^{1} T=[\square
$$

I. Rotates 90°
2. Moves forward 5
3. Rotates -90
4. Moves forward 5
5. Rotates -90
6. Moves forward 3

Exercise 1

$$
{ }_{1}^{0} T=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 5 \\
0 & 0 & 1
\end{array}\right] \quad{ }_{2}^{1} T=[\square
$$

I. Rotates 90°
2. Moves forward 5
3. Rotates -90
4. Moves forward 5
5. Rotates -90
6. Moves forward 3

Exercise 1

$$
{ }_{1}^{0} T=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 5 \\
0 & 0 & 1
\end{array}\right] \quad{ }_{2}^{1} T=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & -5 \\
0 & 0 & 1
\end{array}\right]
$$

1. Rotates 90°
2. Moves forward 5
3. Rotates -90
4. Moves forward 5
5. Rotates -90
6. Moves forward 3

Exercise 1

$$
{ }_{1}^{0} T=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 5 \\
0 & 0 & 1
\end{array}\right] \quad{ }_{2}^{1} T=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & -5 \\
0 & 0 & 1
\end{array}\right] \quad{ }_{3}^{2} T=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & -3 \\
0 & 0 & 1
\end{array}\right]
$$

1. Rotates 90°
2. Moves forward 5
3. Rotates -90
4. Moves forward 5
5. Rotates -90
6. Moves forward 3

Exercise 1

$$
{ }_{2}^{0} T={ }_{1}^{0} T \times{ }_{2}^{1} T \times{ }_{3}^{2} T=\left[\begin{array}{ccc}
0 & 1 & 5 \\
-1 & 0 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

1. Rotates 90°
2. Moves forward 5
3. Rotates -90
4. Moves forward 5
5. Rotates -90
6. Moves forward 3

Exercise 1

$$
{ }_{2}^{0} T={ }_{1}^{0} T \times{ }_{2}^{1} T \times{ }_{3}^{2} T=\left[\begin{array}{ccc}
0 & 1 & 5 \\
-1 & 0 & 2 \\
0 & 0 & 1
\end{array}\right] \quad \begin{aligned}
& \text {...which is } \\
& \text { consistent with } \\
& \text { what we see. }
\end{aligned}
$$

I. Rotates 90°
2. Moves forward 5
3. Rotates -90
4. Moves forward 5
5. Rotates -90
6. Moves forward 3

Exercise 2

$$
{ }_{2}^{0} T=\left[\begin{array}{ccc}
0 & 1 & 5 \\
-1 & 0 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Now let's say we sense an obstacle.
I. What are its coordinates in R ?
2. What are its coordinates in W ?

Exercise 2

$$
{ }_{2}^{0} T=\left[\begin{array}{ccc}
0 & 1 & 5 \\
-1 & 0 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Now let's say we sense an obstacle.
I. What are its coordinates in R ?

- We can transform between F_{R} and F_{S}
- Right now let's eyeball it

Exercise 2

$$
{ }_{2}^{0} T=\left[\begin{array}{ccc}
0 & 1 & 5 \\
-1 & 0 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Now let's say we sense an obstacle.

I. What are its coordinates in R ?

- We can transform between F_{R} and F_{S}
- Right now let's eyeball it
- Looks like it's 1 m ahead $(+x)$ and 1 m in $-y$

Exercise 2

$$
{ }_{2}^{0} T=\left[\begin{array}{ccc}
0 & 1 & 5 \\
-1 & 0 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Now let's say we sense an obstacle.

I. What are its coordinates in F_{R} ?

- We can transform between F_{R} and F_{S}
- Right now let's eyeball it
- Looks like it's 1 m ahead $(+x)$ and 1 m in $-y$
- We can ignore rotation

Exercise 2

$$
{ }_{2}^{0} T=\left[\begin{array}{ccc}
0 & 1 & 5 \\
-1 & 0 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Now let's say we sense an obstacle.

I. What are its coordinates in R ?

$$
\cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

Exercise 2

$$
{ }_{R}^{W} T=\left[\begin{array}{ccc}
0 & 1 & 5 \\
-1 & 0 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Now let's say we sense an obstacle.

I. What are its coordinates in R ?

$$
\cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

2. What are its coordinates in W ?

Exercise 2

$\xi_{o b}=$

Now let's say we sense an obstacle.

I. What are its coordinates in R ?

$$
\cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

2. What are its coordinates in W ?

Exercise 2

$$
\xi_{W}={ }_{R}^{W} T \times \xi_{R}
$$

Now let's say we sense an obstacle.

I. What are its coordinates in R ?

$$
\cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

2. What are its coordinates in W ?

Exercise 2

$$
\xi_{o}=\left[\begin{array}{ccc}
0 & 1 & 5 \\
-1 & 0 & 2 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]=
$$

Now let's say we sense an obstacle.

I. What are its coordinates in R ?

$$
\cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

2. What are its coordinates in W ?

Exercise 2

$\xi_{o}=\left[\begin{array}{ccc}0 & 1 & 5 \\ -1 & 0 & 2 \\ 0 & 0 & 1\end{array}\right] \times\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]=\left[\begin{array}{l}4 \\ 1 \\ 1\end{array}\right]$
Now let's say we sense an obstacle.

I. What are its coordinates in R ?

- $\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$

2. What are its coordinates in W ?

- Which, again, looks right!

Exercise 3

$$
\xi_{O}=\left[\begin{array}{ccc}
0 & 1 & 5 \\
-1 & 0 & 2 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
1 \\
1
\end{array}\right]
$$

Now let's say we sense an obstacle.
I. What are its coordinates in R ?

- $\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$

2. What are its coordinates in W ?

- Which, again, looks right!

