

1
[A final note on] Mobile Kinematics

- Goal: take robot from A_{I} to B_{I}
- We know where we want it in the global setting
- What do we actually control? (In what frame of reference?)

- Point: Convert from A_{I} to B_{I} by changing ξ_{R}

3

5
(A final note on) Mobile Kinematics

- Given this setup:

- We can map $\left\{X_{I}, Y_{I}\right\}$ (global) $\leftrightarrow \rightarrow\left\{X_{R}, Y_{R}\right\}$ (robot)
- Use rotation matrices and velocity vector in x, y, θ
- Why do we care so much?

2

Manipulator Kinematics

- Kinematics (possible motion of a body) for manipulator robots
- End effector position and orientation, wrt. an arbitrary initial frame
- A manipulator is moved by changing (sending motion commands to) its...
- Joints: revolute and prismatic

4

6

7

Mobile vs. Manipulator

- Description: how many parameters... - ...to describe planar position \& orientation?
- ...to describe 3D position \& orientation?

- In 3D, it's always 6
- Where is it on x, y, z ?
- What is its x, y, z rotation?

9

Joint vs. Cartesian space

- Joint space: we control the robot's DoFs
- So we issue commands in terms of those
- Mobile: "Roll forward 2 meters, rotate 53° clockwise"
- Manipulator: "Rotate joint two 90° and joint four 65°, then slide joint three 17 cm "
- Cartesian space: usually we want to accomplish things in terms of the world
- Mobile: Go to the building in B2
- Manipulator: get the object on the table in front of you
- Kinematics lets us transform back and forth

Forward Kinematics \& IK

8

Kinematics Problem

- The state space is the set of all possible states
- The state of the manipulator is:
- A set of variables which describe changes in configuration over time, in response to joint forces + external forces
- Where do joint forces come from?
- Controllers!
- So, given some set of joints, what signals do we send?
- In joint space vs. Cartesian space

Goal

- Goal: take robot end effector from A_{I} to B_{I}
- We know where we want it in the global setting
- What do we actually control?
- Point: Convert from A_{I} to B_{I}

- Now a $6 \leftrightarrow \rightarrow 6$ transformation 12

13

15

17

Review: Z Rotation Matrix*

- In practice, it's really this:
- Rotations around $z \rightarrow 0$ s and 1s

14

Complex Rotations

- What if we don't just rotate around a single axis?
- Any rotation in 3D space can be broken down into single-axis rotations - Given orthogonal axes
- Multiply rotation matrices:
$R=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta_{X} & -\sin \theta_{X} \\ 0 & \sin \theta_{X} & \cos \theta_{X}\end{array}\right]\left[\begin{array}{ccc}\cos \theta_{Y} & 0 & \sin \theta_{Y} \\ 0 & 1 & 0 \\ -\sin \theta_{Y} & 0 & \cos \theta_{Y}\end{array}\right]$

- Can do any number of rotations; just multiply out

16

Multiframe Kinematics

- How many frames of reference do we have?
- We've been translating among frames based on possible motion
- How do they relate?

18

19

Forward Kinematics

- Vector Φ represents the array of \mathbf{M} joint values:

$$
\boldsymbol{\Phi}=\left[\begin{array}{llll}
\phi_{1} & \phi_{2} & \ldots & \phi_{M}
\end{array}\right]
$$

- Vector e represents an array of N values that describe the end effector in world space:

$$
\mathbf{e}=\left[\begin{array}{llll}
e_{1} & e_{2} & \ldots & e_{N}
\end{array}\right]
$$

- If we need end effector position and orientation, \mathbf{e} would contain 6 DOFs: 3 translations and 3 rotations. If we only need end effector position, e would just contain the 3 translations.

21

Describing A Manipulator

- Arm made up of links in a chain
- How to describe each link?
- Many choices exist
- DH parameters, quaternions are widely used, Euler angles...
- Joints each have coordinate system - $\{x, y, z\}, r / p / y$

Describing A Manipulator

- Arm made up of links in a chain
- Joints each have $\langle x, y, z\rangle$ and roll/pitch/yaw
- So, each joint has a coordinate system
- We label links, joints, and angles

20

Forward \& Inverse

- Forward:
- Inputs: joint angles
- Outputs: coordinates of end-effector
- Inverse:
- Inputs: desired coordinates of endeffector
- Outputs: joint angles
- Inverse kinematics are tricky
- Multiple solutions
- No solutions
- Dead spots

22

Forward: i \rightarrow i-1

- We are we looking for transformation matrix T, going from frame i to frame i-1:

$$
\mathrm{T}_{\mathrm{i}}^{\mathrm{i}-1} \quad \text { (also written }{ }_{\mathrm{i}}^{\mathrm{i}-\mathrm{T}} \mathrm{~T} \text { or }{ }^{\mathrm{i}-1} \mathrm{~T}_{\mathrm{i}} \text {) }
$$

- Determine position and orientation of endeffector as function of displacements in joints
- Why?
- So we can multiply out along all joints
${ }_{23}$

25

27

Denavit-Hartenberg Method

- Efficient way to find transformation matrices

1. Set frames for all joints

- This is actually the tricky part.

2. Calculate all DH parameters from frames

- 4 DH parameters fully define position and orientation (not 6)

3. Populate DH parameter table
4. Populate joint-to-joint DH transformation matrices

- Matrix for 0-1, matrix for 1-2, etc.

5. Multiply all matrices together, in order

- $0-1 \times 1-2 \times 2-3 \times \ldots$

26

Describing A Manipulator

- Arm made up of links in a chain
- How to describe each link?
- Many choices exist
- DH parameters widely used
- Although it's not true that quaternions are not widely used
- DH parameters
- Denavit-Hartenberg
- $\mathrm{a}_{\mathrm{i}-1}, \mathrm{o}_{\mathrm{i}-1}, \mathrm{~d}_{\mathrm{i}}, \theta_{2}$

28

Defining Frames for Joints

- What's the frame of reference for a joint?
- Actually, completely flexible
- We usually choose:
- 1 axis through the center of rotation/direction of displacement
- 2 more perpendicular to that - Which can be any orientation!
- We can move the origin
- P is no longer $\langle 0,0,0\rangle$
- To use DH method, choose frames carefully

31

Denavit-Hartenberg Method

- A way of finding transformation matrix (quickly)

1. Assign DH frames to DoFs (previous slide)

- This takes practice.

2. Create a parameter table

- Rows = (\# frames - 1)
- Columns = $\mathbf{4}$ (always) \leftarrow your DH parameters $\theta, \alpha, \mathrm{a}, \mathrm{d}$

	$\boldsymbol{\theta}$	$\boldsymbol{\alpha}$	\mathbf{a}	\mathbf{d}
frame 0-1	θ_{0-1}	α_{0-1}	a_{0-1}	$\mathrm{~d}_{0-1}$
frame 1-2	θ_{1-2}	α_{1-2}	a_{1-2}	$\mathrm{~d}_{1-2}$
frame 2-3	\ldots	\ldots	\ldots	\ldots

32

Denavit-Hartenberg Method

- Given parameter table,

3. Fill out transformation matrix* for each transition:

$$
R_{i}^{i-1}=\left[\begin{array}{cccc}
\cos \theta_{i} & -\sin \theta_{i} \cos \alpha_{i, i+1} & \sin \theta_{i} \sin \alpha_{i, i+1} & a_{i,+1} \cos \theta_{i} \\
\sin \theta_{i} & \cos \theta_{i} \cos \alpha_{i,+1} & -\cos \theta_{i} \sin \alpha_{i,+1} & a_{i, i+1} \sin \theta_{i} \\
0 & \sin \alpha_{i, i+1} & \cos \alpha_{i, i 1} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

3. And multiply. Ex: $R_{2}^{0}=R_{1}^{0} R_{2}^{1}$

- R_{2}^{0} is the same matrix as would be found by other methods. DH is fast and efficient.

34

Transformation i to i-1

$\mathrm{a}_{\mathrm{i}-1}$: distance $\mathrm{Z}_{\mathrm{i}-1}$ and Z_{i} along $\left.\mathbf{X}_{\mathrm{i}}\right\}$ together: screw α_{i-1} : angle Z_{i-1} and Z_{i} around $\left.X_{i}\right\}$ displacement

$$
\left[X_{i}\right]=\operatorname{Trans}_{X_{i}}\left(a_{i, i+1}\right) \operatorname{Rot}_{X_{i}}\left(\alpha_{i, i+1}\right)
$$

$\mathbf{d}_{\mathbf{i}}$: distance $\mathbf{X}_{\mathbf{i}-1}$ to $\mathbf{X}_{\mathbf{i}}$ along $\mathbf{Z}_{\mathbf{i}}$ together: screw $\boldsymbol{\theta}_{\mathbf{2}}$: angle $\mathbf{X}_{\mathrm{i}-1}$ and $\mathbf{X}_{\mathbf{i}}$ around $\left.\mathrm{Z}_{\mathrm{i}}\right\}$ displacement

$$
\left[Z_{i}\right]=\operatorname{Trans}_{Z_{i}}\left(d_{i}\right) \operatorname{Rot}_{Z_{i}}\left(\theta_{i}\right)
$$

- Coordinate transformation:
${ }^{i-1} T_{i}=\left[Z_{i}\right]\left[X_{i}\right]=\operatorname{Trans}_{Z_{i}}\left(d_{i}\right) \operatorname{Rot}_{Z_{i}}\left(\theta_{i}\right) \operatorname{Trans}_{X_{i}}\left(a_{i, i+1}\right) \operatorname{Rot}_{X_{i}}\left(\alpha_{i, i+1}\right)$,

37

