

(A final note on) **Mobile Kinematics** (Final note on) **Mobile Kinematics** • Goal: take robot from A_I to B_I • We know where we want it in the global setting • What do we actually control? (In what frame of reference?) • $\int_{y_1}^{y_2} \int_{y_2}^{y_3} \xi_A = \begin{pmatrix} x \\ y \\ \theta \end{pmatrix}$ • Point: Convert from A_I to B_I by changing ξ_R

3

Other Rotation Matrices 182 Similarly derived 0 0 $R_X = \begin{bmatrix} 0 & \cos\theta_X & -\sin\theta_X \end{bmatrix}$ from axis of $cos\theta_X$ $\int_{0}^{n} \sin \theta_{x}$ rotation and trigonometric values of 0 $sin\theta_Y$ $cos\theta_Y$ projections $R_Y =$ 0 1 0 -sinθ_Y 0 $cos\theta_Y$ $-sin\theta_Z$ $[cos \theta_Z]$ 0 $cos\theta_Z$ $R_Z = sin\theta_Z^2$ 0 1 Ω Ω

15

Forward Kinematics (Second Second Se

