Rotation matrices, quiz

θ

$\xi_{\mathrm{I}}=$

- Moves forward 2 meters.
- Turns 90 degrees to the right.
- Walks backwards 5 meters.
- Turns 45 degrees to the left.
- Walks forward $1.4142(\sqrt{ } 2)$ meters.
- Rotates 53 degrees to the right.

Rotation matrices, quiz

θ

$\xi_{\mathrm{I}}=$

- Moves forward 2 meters.
- Turns 90 degrees to the right.
- Walks backwards 5 meters.
- Turns 45 degrees to the left.
- Walks forward I.4142 ($\sqrt{ }$ 2) meters.
- Rotates 53 degrees to the right.

Rotation matrices, quiz

$\theta=270^{\circ}$

$\xi_{\mathrm{I}}=$

- Moves forward 2 meters.
- Turns 90 degrees to the right.
- Walks backwards 5 meters.
- Turns 45 degrees to the left.
- Walks forward I.4142 ($\sqrt{ } \mathbf{2})$ meters.
- Rotates 53 degrees to the right.

Rotation matrices, quiz

$\theta=270^{\circ}$

$\xi_{\mathrm{I}}=$

- Moves forward 2 meters.
- Turns 90 degrees to the right.
- Walks backwards 5 meters.
- Turns 45 degrees to the left.
- Walks forward $1.4142(\sqrt{ } \mathbf{2})$ meters.
- Rotates 53 degrees to the right.

Rotation matrices, quiz

$$
\theta=270^{\circ}+45^{\circ}=315^{\circ}
$$

$\xi_{\mathrm{I}}=$

- Moves forward 2 meters.
- Turns 90 degrees to the right.
- Walks backwards 5 meters.
- Turns 45 degrees to the left
- Walks forward $1.4142(\sqrt{ } 2)$ meters.
- Rotates 53 degrees to the right.

Rotation matrices, quiz

$\theta=315^{\circ}$

$\xi_{\mathrm{I}}=$

- Moves forward 2 meters.
- Turns 90 degrees to the right.
- Walks backwards 5 meters.
- Turns 45 degrees to the left.
- Walks forward I.4I42 ($\sqrt{ } 2$ meters.
- Rotates 53 degrees to the right.

Rotation matrices, quiz

$$
\theta=315^{\circ}+307^{\circ}=262^{\circ}
$$

$\xi_{\mathrm{I}}=$

- Moves forward 2 meters.
- Turns 90 degrees to the right.
- Walks backwards 5 meters.
- Turns 45 degrees to the left.
- Walks forward $1.4142(\sqrt{ }$ 2) meters.
- Rotates 53 degrees to the right.

Rotation matrices, quiz

$\theta=315^{\circ}+307^{\circ}=262^{\circ}$
$\xi_{\mathrm{I}}=\left[\begin{array}{l}x \\ y \\ \theta\end{array}\right]$
X_{I}

- Moves forward 2 meters.
- Turns 90 degrees to the right.
- Walks backwards 5 meters.
- Turns 45 degrees to the left.
- Walks forward $1.4142(\sqrt{ } 2)$ meters.
- Rotates 53 degrees to the right.

Rotation matrices, quiz

$$
\theta=315^{\circ}+307^{\circ}=262^{\circ}=131 \pi / 90
$$

$$
\xi_{\mathrm{I}}=\left[\begin{array}{c}
x \\
y \\
\theta
\end{array}\right]=\left[\begin{array}{c}
-4 \\
3 \\
\theta
\end{array}\right]
$$

- Moves forward 2 meters.
- Turns 90 degrees to the right.
- Walks backwards 5 meters.
- Turns 45 degrees to the left.
- Walks forward $1.4142(\sqrt{ } \mathbf{2})$ meters.
- Rotates 53 degrees to the right.

Rotation matrices, quiz

$\theta=270^{\circ}+45^{\circ}+307^{\circ}=262^{\circ}=131 \pi / 90$
$\xi_{\mathrm{I}}=\left[\begin{array}{l}x \\ y \\ \theta\end{array}\right]=\left[\begin{array}{c}-4 \\ 3 \\ 131 \pi / 90\end{array}\right]$

- Moves forward 2 meters.
- Turns 90 degrees to the right.
- Walks backwards 5 meters.
- Turns 45 degrees to the left.
- Walks forward I.4142 ($\sqrt{ }$ 2) meters.
- Rotates 53 degrees to the right.

Rotation matrices, quiz [Y axis]

$\theta=270^{\circ}+45^{\circ}+307^{\circ}=262^{\circ}=131 \pi / 90$
$\xi_{\mathrm{I}}=\left[\begin{array}{l}x \\ y \\ \theta\end{array}\right]=\left[\begin{array}{c}3 \\ -4 \\ 131 \pi / 90\end{array}\right]$

- Moves forward 2 meters.
- Turns 90 degrees to the right.
- Walks backwards 5 meters.
- Turns 45 degrees to the left.
- Walks forward I.4142 ($\sqrt{ }$ 2) meters.
- Rotates 53 degrees to the right.

Rotation matrices, quiz

- What is the (solved) instantaneous rotation matrix of the robot below?

$$
\xi_{\mathrm{I}}=\left[\begin{array}{c}
-4 \\
3 \\
131 \pi / 90
\end{array}\right]
$$

- Okay, how do we get a matrix from this vector?
- We rotated counterclockwise around z, so...
- (Let's make some space)

Rotation matrices, quiz

- What is the (solved) instantaneous rotation matrix of the robot below?

$$
\xi_{\mathrm{I}}=\left[\begin{array}{c}
-4 \\
3 \\
131 \pi / 90
\end{array}\right], \quad R(\theta)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- We apply the z rotation matrix

Rotation matrices, quiz

- What is the (solved) instantaneous rotation matrix of the robot below?

$$
\xi_{\mathrm{I}}=\left[\begin{array}{c}
-4 \\
3 \\
131 \pi / 90
\end{array}\right], R(\theta)=\left[\begin{array}{ccc}
\cos 131 \pi / 90 & -\sin 131 \pi / 90 & 0 \\
\sin 131 \pi / 90 & \cos 131 \pi / 90 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- We apply the z rotation matrix
- Plug in theta...

Rotation matrices, quiz

- What is the (solved) instantaneous rotation matrix of the robot below?

$$
\xi_{\mathrm{I}}=\left[\begin{array}{c}
-4 \\
3 \\
131 \pi / 90
\end{array}\right], R(\theta)=\left[\begin{array}{ccc}
\cos 131 \pi / 90 & -\sin 131 \pi / 90 & 0 \\
\sin 131 \pi / 90 & \cos 131 \pi / 90 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
-0.14 & 0.99 & 0 \\
-0.99 & -0.14 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- We apply the z rotation matrix
- Plug in theta...
- This is it.

