

1

Review: Kinematic Models

- Models how a system can move in the world

1. With respect to the world and its own parts
2. Configuration: where are all the points on the system?

- Manipulators: links, joints, base
- Manipulator links from a chain
- Serial or parallel (mostly)
- Mobile robots: possible $x / y / z$ movement
- Omni wheels \neq wheels \neq flying

3

Review: Frames of Reference

- What's a frame of reference?
- A coordinate system + point(s) to locate and orient it
- Usually x, y, and sometimes z coordinates, plus origin
- Things move with respect to some frame of reference.

5

Kinematics

- What is kinematics?
- The study of the motion of objects.
- The study of the geometrically possible motion of a body or system of bodies
- Regardless of causes and effects of motion
- Movement determines the (eventual) position and orientation of the robot
- Mobile: position and orientation wrt. some initial frame
- Manipulator: position and orientation of end effector
- But... what are we trying to do??
- Get a robot where we want it to bel

2

Review: Kinematic Chains

Multiple links and joints are called a kinematic chain.

4

Kinematics and IK

- Need position and orientation of the robot
- Mobile: with respect to an arbitrary initial frame
- Manipulator: position and orientation of end effector
- Forward kinematics: from parameters to configuration
- A configuration is \qquad
- Inverse Kinematics (IK): from a desired configuration to parameters that make it so

Forward Kinematics

- Find position and orientation from parameters
- Mobile: robot center
- Manipulator: end effector
- Manip. Forward Kinematics (angles to position)
. Given:
- Kinematic model plus
- Angle/displacement of each joint

Find:

- The position of any point
- E.g.: Paintbrush is at these coordinates, pointed this way

7

9

Global + Local FoR

- We always have (at least) two frames of reference
- Global (or initial) frame of reference: the world the system exists in
- Local (or robot) frame of reference: grounded in the system - If she turns, they aren't in agreement - they differ by θ
- Transform coordinates from one to the other

Inverse Kinematics (IK)

- Find parameters from position o
- Mobile: robot center
- Manipulator: end effector
- Manip. Inverse Kinematics (posi
. Given:
- Parameters and kinematics mod
- Desired position/orientation of robot
Find:
- Parameters: angle/displacemer obtain that position

Why?

We have direct control over joints.

We have indirect control over robot's position in the world.
If we want the
paintbrush here.

we need to know what to tell joints to do.

8

Mobile Robot Kinematics

- Description of mechanical behavior of the robot for design and control
- Similar to manipulator kinematics
- However, mobile robots can move unbounded with respect to the environment
- No direct way to measure robot's position
- Position must be integrated over time
- Leads to inaccuracies of the position (motion) estimate

12

Mobile Kinematics: Concepts

- Forward Kinematics:
- Parameters \rightarrow Configuration
- Inverse Kinematics (IK):
- Configuration \rightarrow Parameters
- I want to be in this configuration. What motions should I make?
- Mobile configuration = position and orientation with respect to an arbitrary initial frame I
- Understanding mobile robot motion starts with understanding constraints on the robot's mobilit / .

13

What We're Trying to Do

- Sequence of events:
- Power on: position = $(0,0)$, orientation = due north
- Rotate 15° right
- Move forward 2 meters
- Observe obstacle
- Rotate 30° left
- Move forward 1 meter
- Position - (?,?), orientation = ?
- Where's the obstacle?

Specifying Transforms

- How does a robot (or system) relate to the global frame of reference?
- Configuration $=$ position and orientation
- Position: x, y coordinates
$x_{I, t}$ and $y_{I, t}$
- $I=$ initial (global)
- $t=$ timestep
- Orientation: θ

- Angle between robot's coordinate system and initial coordinate system

Wheeled Motion Control

- Requirements for controlling motion:
- Kinematic / dynamic models of the robot
- Model of interaction between the wheel and the ground
- Definition of required motion
- What speed and position controls are there? Are possible?
- A control policy that satisfies the requirements

Projections

- A projection of a vector v onto an axis is the amount of change along that axis along v
- Here:
- $a=\Delta x_{t}$
- $b=\Delta y_{I}$
- This is the change in position in that axis
- So now we can talk about where something is on $x_{l}, y_{I}{ }^{*}$ axes, given v
*The initial $=$ global $=$ map axes and coordinates

17

20

Mapping Between Frames

- Representing robot in an arbitrary initial frame
- Initial frame: $\left\{X_{I}, Y_{I}\right\}$
- Robot frame: $\left\{X_{R}, Y_{R}\right\}$
- Robot: $\xi_{\mathrm{I}}=\left[\begin{array}{lll}x & y & \theta\end{array}\right]^{\mathrm{T}}$
- Just the transpose notation
- Goal
- Map motions from global

22 reference frame to local reference frame (and vice versa)

$$
\Delta\left\{X_{R}, Y_{R}\right\} \rightarrow \Delta\left\{X_{1}, Y_{l}\right\}
$$

Mapping Between Frames

- Global reference frame local reference frame

$$
\left\{X_{I}, Y_{I}\right\}>\left\{X_{R}, Y_{R}\right\}
$$

- Map motion from axes of one to axes of the other
- This mapping depends on current pose
- How do you do this mapping?
- How do you perform a rotation in Euclidean spaces?

21

23

Mapping Between Frames

- Global reference frame local reference frame

$$
\left\{X_{I}, Y_{I}\right\} \notin\left\{X_{R}, Y_{R}\right\}
$$

- Map motion from axes of one to axes of the other
- Mapping depends on current pose
- Use the orthogonal reference frame*:

26

The Z Rotation Matrix*

*AKA orthogonal rotation matrix 2
28

The Z Rotation Matrix*

* AKA orthogonal rotation matrix 27

27

The Z Rotation Matrix

If we assume frame axes are of length $1 \ldots$

29

The Z Rotation Matrix

If we assume frame axes are of length 1

- $a=\cos \theta$
- $b=\sin \theta$
- $c=-\sin \theta$
- $d=\cos \theta$

What about z ?

The Z Rotation Matrix

- If we assume frame axes are of length 1
- $a=\cos \theta$
- $b=\sin \theta$
$\begin{aligned} & \text { - } c=-\sin \theta \\ & \text { - } d=\cos \theta \\ & \text { What about } z ?\end{aligned}$
a
* AKA orthogonal rotation matrix 32

32

The Z Rotation Matrix

- If we assume frame axes are of length 1
- $a=\cos \theta$
- $h=\sin \theta$

Now Watch

https://youtu.be/lVjFhNv2N8o
She goes through the same material, but a bit slower; she also derives these rotation matrices, which can help.

* AKA orthogonal rotation matrix 34

34

Orthogonal Rotation Matrix

- This mapping function is called

The Z Rotation Matrix

If we assume frame axes are of length 1

- $a=\cos \theta$
- $b=\sin \theta \quad y_{l}$
- $c=-\sin \theta$
- $d=\cos \theta$
What about z ?

33

Mapping Between Frames

- Rotation matrices (in Euclidean space)

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x_{R} \\
y_{R}
\end{array}\right]=\left[\begin{array}{l}
x_{I} \\
y_{I}
\end{array}\right]
$$

- Rotates points in the $x-y$ plane counter-clockwise, through θ, around the origin.

- To use R, the position of each point is represented by a vector.
- A rotated vector is then obtained with matrix multiplication.

35

Orthogonal Rotation Matrix

- This mapping function is called

Next time...

- Whoosh!
- Class: let's actually do some of this!
- Next lecture: calculating movement using displacement vectors
- Some of the kinematics of 3D movement

Rotation matrices, ex 1

- What is the current configuration of the robot, by eye?

X_{I}
40
40

Rotation matrices, ex 1

- What is the current configuration of the robot, by eye?
Y_{I}
$\xi_{\mathrm{I}}=\left[\begin{array}{l}x \\ y \\ \theta\end{array}\right]$
- Configuration in the initial frame is denoted by ξ_{I}
- x, y, and θ denote the coordinates and rotation in I

Remember this?

- Power on: position = $(0,0)$, orientation = due north
- Rotate 15° right
- Move forward 2 meters
- Observe obstacle
- Rotate 30° left
- Move forward 1 meter

- Position - (?,?), orientation = ?

Rotation matrices, ex 1

- What is the current configuration of the robot, by eye?
$\xi_{\mathrm{I}}=$
- Configuration in the initial frame is denoted by ξ_{I}

41

Rotation matrices, ex 1

- What is the current configuration of the robot, by eye?
$\xi_{\mathrm{I}}=\left[\begin{array}{l}x \\ y \\ \theta\end{array}\right]=\left[\begin{array}{c}3 \\ 2 \\ 45^{\circ}\end{array}\right]$
- Configuration in the initial frame is denoted by ξ_{I}
- x, y, and θ denote the coordinates and rotation in I
- This looks right
X_{I}

Rotation matrices, ex 1

- What is the current configuration of the robot, by eye?
Y_{I}
$\xi_{\mathrm{I}}=\left[\begin{array}{l}x \\ y \\ \theta\end{array}\right]=\left[\begin{array}{c}3 \\ 2 \\ 45^{\circ}\end{array}\right]=\left[\begin{array}{c}3 \\ 2 \\ \pi / 4\end{array}\right]$
- Configuration in the initial frame is denoted by ξ_{I}
- x, y, and θ denote the coordinates and rotation in I
- This looks right
- It's always easier to use radians

44

Rotation matrices, ex 2

- What is the (solved) instantaneous rotation matrix of the robot below?
Y_{I}

X_{I}
46
46

Rotation matrices, ex 2

- What is the (solved) instantaneous rotation matrix of the robot below?
$\xi_{\mathrm{I}}=\left[\begin{array}{l}x \\ y \\ \theta\end{array}\right]=\left[\begin{array}{c}3 \\ 2 \\ 315\end{array}\right]$
- First, the configuration
- This looks right
- Why is it 315° ?
Y_{I}

Discussion

- Why is it 45° and not 315° ?
- Because this is the counterclockwise rotation matrix
- Why does the robot show axis $-X_{R}$ instead of X_{R} ?
- To make it easier to line up with X_{I}
- Because I don't have space to draw the arrow pointing the other way

Rotation matrices, ex 2

- What is the (solved) instantaneous rotation matrix of the robot below?
$\xi_{\mathrm{I}}=\left[\begin{array}{l}x \\ y \\ \theta\end{array}\right]=$
- First, the configuration

X_{I}

47

Rotation matrices, ex 2

- What is the (solved) instantaneous rotation matrix of the robot below?

$$
\xi_{\mathrm{I}}=\left[\begin{array}{l}
x \\
y \\
\theta
\end{array}\right]=\left[\begin{array}{c}
3 \\
2 \\
315
\end{array}\right]=\left[\begin{array}{c}
3 \\
2 \\
7 \pi / 4
\end{array}\right]
$$

- First, the configuration
- This looks right
- Why is it 315° ?
- Always easier in radians

Rotation matrices, ex 2

- What is the (solved) instantaneous rotation matrix of the robot below?
$\xi_{\mathrm{I}}=\left[\begin{array}{c}3 \\ 2 \\ 7 \pi / 4\end{array}\right]$
- Okay, how do we get a matrix from this vector?
Y_{I}

50

Rotation matrices, ex 2

- What is the (solved) instantaneous rotation matrix of the robot below?
$\xi_{\mathrm{I}}=\left[\begin{array}{c}3 \\ 2 \\ 7 \pi / 4\end{array}\right]$
- Okay, how do we get a matrix from this vector?
- We rotated counterclockwise around z, so..
- (Let's make some space)

Rotation matrices, ex 2

- What is the (solved) instantaneous rotation matrix of the robot below?
$\xi_{\mathrm{I}}=\left[\begin{array}{c}3 \\ 2 \\ 7 \pi / 4\end{array}\right], \quad R(\theta)=\left[\begin{array}{ccc}\cos ^{7 \pi} / 4 & -\sin ^{7 \pi} / 4 & 0 \\ \sin 7 \pi / 4 & \cos 7 \pi / 4 & 0 \\ 0 & 0 & 1\end{array}\right]$
- We apply the z rotation matrix
- Plug in theta...

Rotation matrices, ex 2

- What is the (solved) instantaneous rotation matrix of the robot below?
$\xi_{\mathrm{I}}=\left[\begin{array}{c}3 \\ 2 \\ 7 \pi / 4\end{array}\right]$
- Okay, how do we get a matrix from this vector?
- We rotated counterclockwise around z, so..

Rotation matrices, ex 2

- What is the (solved) instantaneous rotation matrix of the robot below?
$\xi_{\mathrm{I}}=\left[\begin{array}{c}3 \\ 2 \\ 7 \pi / 4\end{array}\right] \quad R(\theta)=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$
- We apply the z rotation matrix

Rotation matrices, ex 2

- What is the (solved) instantaneous rotation matrix of the robot below?
$\xi_{\mathrm{I}}=\left[\begin{array}{c}3 \\ 2 \\ 7 \pi / 4\end{array}\right], \quad R(\theta)=\left[\begin{array}{ccc}\cos ^{7 \pi} / 4 & -\sin 7 \pi / 4 & 0 \\ \sin 7 \pi / 4 & \cos ^{7 \pi} / 4 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}-0.25 & 0 & 0 \\ 0 & -0.25 & 0 \\ 0 & 0 & 1\end{array}\right]$
- We apply the z rotation matrix
- Plug in theta...
- This is it.

Rotation matrices, ex 2

- What is the (solved) instantaneous rotation matrix of the robot below?
$\xi_{\mathrm{I}}=\left[\begin{array}{c}3 \\ 2 \\ 7 \pi / 4\end{array}\right], \quad R(\theta)=\left[\begin{array}{ccc}\cos 7 \pi / 4 & -\sin ^{7 \pi} / 4 & 0 \\ \sin 7 \pi / 4 & \cos ^{7 \pi} / 4 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}-0.25 & 0 & 0 \\ 0 & -0.25 & 0 \\ 0 & 0 & 1\end{array}\right]$
- We apply the z rotation matrix
- Plug in theta...
- This is it.

56

Rotations matrices, ex 3

- So far we have been working with the z-axis orthogonal rotation matrix, derived:
- Here: https://youtu.be/ViFhNv2N8o
- Here: https://youtu.be/OYuoPTRVzxY
- Here (new): https://youtu.be/8XRvpDhTJpw
- What if we want to rotate something around another axis, say, x ?
. "Pitch"

58

Rotation matrices, ex 2

- What is the (solved) instantaneous rotation matrix of the robot below?
$\xi_{\mathrm{I}}=\left[\begin{array}{c}3 \\ 2 \\ 7 \pi / 4\end{array}\right], \quad R(\theta)=\left[\begin{array}{ccc}\cos 7 \pi / 4 & -\sin 7 \pi / 4 & 0 \\ \sin 7 \pi / 4 & \cos 7 \pi / 4 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}{\left[\begin{array}{cc}-0.25 & 0 \\ 0 & 0 \\ 0 & -0.25 \\ 0 & 0\end{array}\right.} & 1\end{array}\right]$
- We apply the z rotation matrix
- Plug in theta...
- This is it
- The instantaneous rotation matrix of this guy:

Rotations matrices, ex 3

. Consider: what's the instantaneous rotation matrix for this robot?

- How would you derive the orthogonal rotation matrix for going counterclockwise around X ?
- Or some arbitrary axis?

Rotations matrices, ex 3

- What's the instantaneous rotation matrix for this robot?
- You won't need to do such a derivation on this week's quiz
- But it's a good idea to consider the source of the math
- In general!
- Solution: https://youtu.be.com/wg9bl8-Qx2Q

