1 Bookkeeping Manipulation Overview, Concepts, Types Homework 2 out Project milestone 1 due right after spring break Make sure you make arrangements with your group for spring break A little tiny bit of stern stuff: Do not let 1-2 people do all the building. Do not do anything to mess up your group. Many slides adapted from en.wikipedia.org S. N. Kale, Assistant Professor, PVPIT, Budhgaon www.amci.com/tutorials/tutorials-stepper-vs-servo.asp whats.the.dfframene here 2 1

Pick-and-Place 1 W. Uses Current Future Industrial • Elder care Welding Entertainment Drilling Environment sampling Attaching (screws, rivets) Compliant-material Painting interactions (sewing) Loading/unloading Police work Surgery Plus: more chores, more Space exploration Chores patient care, more . surgery, more space, &c. Patient care -(but better) . Delivery utube.com/watch?v=wg8YYuLLoM0 11

Manipulator Characterization (**) By drive type By actuation: Tendons, direct servoing, underactuation By motion type Prismatic (linear) Revolute (rotational) By Characteristics Payload, radius, Working area

15

17

Joints: Denotation

- A joint represents a connection between two links

1

- Denotation of relative displacement between links
 - θ for revolute joint
 - d for prismatic joint
- Denotation of axis of motion
 - z_i between link *i* and link *i*+1:
 - Axis of rotation of a revolute joint
 - Axis of translation of a prismatic joint

22

Sanity check		
 What's a link? 		A rigid, connecting piece
 What's a joint? 	•	Where two links move relative to each other
 What's a base? 	•	The robot's "starting point" – furthest from end effector
 What kinds of joint 		Revolute and prismatic
Mbat's a configuration?	·	Current orientation and
		position of manipulator
 How is it specified? 	•	Per joint, using θ or d
What's an end effector?		The interactive bit on the end
		26

26

32

- Configuration: location of all points on a manipulator at a point in time • Specified by state of every joint (θ or d)

 - . Can treat these as a **vector**, q
 - Example: if θ_1 =60°, d_1 =3cm, and θ_2 =12.2° (\leftarrow RPR)!
 - $q = \langle q_1, q_2, q_3 \rangle = \langle 60, 3, 12.2 \rangle$
- Configuration space: set of This is also called ioint space all possible configurations
- Doesn't say anything about dynamics.
 - How is it moving? How CAN it move?

Workspaces

- So where can a manipulator go (reach in space)?
- Workspace:
- Set of all possible positions of end effector
- In practice, these can be complex

	Conc.
2. 7. 1. 1.	P
Cylindrical: RPP	di la
Kinematic model	Workspace
teninson, viayasagar. Robot Modeli	ing ana Control. 2006.

36

Measuring Success

36

- Accuracy: how close is manipulator to specified configuration/is end effector to specified coordinate?
- **Repeatability:** how similar is behavior given an identical command?
- We only measure joint state (using encoders)
 Everything else is inferred from rigid links
- Primary source of failure: Rigidity of links
- And straightness, but that can be calibrated outGiven gravity, load, angular velocity, ...

38

Summary: Specifying Manipulators

- Kinematic model: Links, joints, and base
- Configuration space: arrangement of a manipulator
 - I.e., where are all its parts?
- State space: Configuration + motion
- Workspace: where it can reach, in what configuration
- Accuracy, repeatability/precision

Other Important Features 🛛 🥳

Workspace

on, Vidyasagar. Robot Modeling and Control

Dexterous workspace: end effector can be in any

Payload: How much can it lift?

Workspaces 2

position and orientation

Cylindrical: RPP

Kinematic model

Subset of workspace

2] 1.0

- Varies depending on location of end effector
- Speed: How fast can it go?How does speed of a *joint* relate to speed of *arm*?
- Working radius: what's the boundary it can't reach past?
- Actuation type: How is it made to go?
- Servo, tendon-driven, underactuated, ...

39