CMSC 479/679 Fall 2014

Dr. Cynthia Matuszek

1

Today: Intro & Overview

- Review of syllabus and schedule
 - Academic honesty
 - Expectations and conduct
 - Policies, grading, etc.
- Overview of Robotics and Topics
 - What is a robot? (And why is robotics so cool?)
 - What's the state of robotics now?
- What is 'intelligence'? Autonomy?

My Research Topics

Robotics

- How can we go from industrial robots to useful robots in human environments? (Schools, cars, homes...)
- Natural Language Processing
 - How can computers learn to understand and speak human languages (English)?
- Artificial intelligence
 - How can we get computers to behave in ways that we would consider to be "intelligent?"
- Human-Robot Interaction (HRI)

2

2

Resources

- The syllabus is longish, but important:
 - http://tiny.cc/479-class
- Lecture topics and reading on the schedule:
 - You'll want to check this every single class.
 - http://tiny.cc/479-schedule
- We will use Piazza extensively:
 - So get your account sorted right away!
 - http://tiny.cc/479-piazza
- The class slides are intended to be the notes

_

w but

important

Classroom Policies

- Be courteous to classmates and instructors.
- No devices in use except when specified.
 - You don't learn as much.
 - People around you don't learn as much.
 - http://tiny.cc/devices-in-class
- No food in this classroom.

NO CELEC

Homework: **20**Course project: **30**%

Final exam: 20%

Midterm exam: 15%

Class participation: 15%

ectorstock.com, KSPprints.com

5

Grading

- Grades in Blackboard
 - Know your grades but also
 - Keep track of what's left
- Grade questions:
 - 24-hour "cooling" period before any discussion
- Grade changes/regrades:
 - Requests to professor and TA
 - TA cannot change grades!

Harassment and Inclusivity

- All students are entitled to a safe, respectful, and inclusive learning environment both inside and outside the classroom.
- No discrimination, exclusion, or harassment
- Respectful, inclusive discussion
 - Use one another's preferred names, pronouns, etc.
- If there are problems
 - Talk to me, the TA, or someone else
 - There are resources on the syllabus

6

Participation

- Attend class.
 - The program (and I) expect you to be here for the entire semester.
- Speak up.
 - Ask & answer questions
 - Tell us your thoughts
- Be active on Piazza.
 - Ask and answer questions.
 - Post links to interesting material.
- Do any take-home quizzes and/or surveys.

8 l

5-6 Homework Assignments

- Written text, problem sets, and programming
 - Due at 11:59 PM the day before class
 - Late: 25% off /day
 - If Blackboard says it's late, it's late.
- Assignments will be turned in electronically
 - Assignment will specify Blackboard, forms, or email
 - Sometimes 10% penalty for not following instructions
 - Example: Wrong file type
- Questions? Piazza, then TA

These policies are firm. Please don't ask for exceptions.

9

A Word About This Class

• The biggest complaint people have had:

There's way too much math in this class!

- Take it as a warning: modern robotics is mathy.
 - Linear algebra, calculus, probability
 - The second half will be much more mathematical than the first
 - This is not an easy class!
- You do not need hardware experience.

Time Management

- Some things can be rescheduled
 - E.g., overlapping exams
 - If enough people have them
- Individual extensions may be given:
 - With reasonable cause
 - When made in advance
- Talk to me!

10

Reading

- Readings: Do these after class
 - More detail on concepts
 - You need to know the content!
- We use SNS more during the first half

11

Academic Integrity

Instructor's responsibilities:

- Be respectful
- Be fair
- Be available
- Tell the students what they need to know
- Students' responsibilities:
 - Be respectful
 - Do not cheat, plagiarize, or lie, or help anyone else do so
 - Do not interfere with other students' academic activities

13

13

Today in Detail

- Introduction and goals
- Review of syllabus and schedule
- Academic honesty policy
- Expectations
- Topics we'll cover
- What is a robot?

Summary and Links

Before next class!

 Sign up for Piazza: http://tiny.cc/479-piazza

Read the syllabus: http://tiny.cc/479

 Read the integrity policy: <u>http://tiny.cc/479-integrity</u>

Read SNS Chapter 1

14

14

16

Goals of This Course

- Provide an overview of big problems in robotics
- Understand the elements of a robot system
- Get hands-on experience with robot software, hardware, and problem-solving
- Understand what robots can do now, could do better, and will be doing in future

16

Teamwork

- Projects will be done in teams of 4-5
- Teams will be assigned based on skills and interests
- Teams will:
 - Meet regularly
 - Do in-class and out-of-class group assignments
 - Share effort on project elements reasonably
 - Occasionally describe who's doing what

17

17

Integrity and Teamwork

- A lot of your grade involves teamwork.
- How can teamwork be unethical?
 - Not sharing the workload evenly
 - Not contributing to the group
 - Misrepresenting who did what
 - Working together on individual assignments
- Falsely claiming someone contributed to the group.

Don't make me handle a cheating case.

19

Academic Integrity

- I hate policing students. But... I take integrity very seriously.
 - Fabrication: Fabricating sources or any other information.
 - Aiding and abetting: Providing another student with answers, or helping them to cheat.
 - Plagiarism: Using a source (for code, blocks of text, images, or designs) without appropriate citations and recognition.
 - Copying: Using another student's work for an assignment, exam, or project without acknowledgment.
- You can do a LOT of collaboration in this class!

18

18

Expectations

- Attend class regularly
 - DO NOT come to class sick.
 - Make sure you follow up on the notes.
- Complete the assigned reading
- Participate
 - Participate actively in class discussions
 - Let other people participate, and listen attentively
 - Ask questions!
 - Read and post to the forum

20

19 20

Communications

- For help:
 - Post to Piazza (if appropriate)
 - Come to office hours
 - Email the TA (if appropriate)
- Email:
 - 24-hour cooling period
 - Always Cc the TA
 - Email should include a link to your Piazza post.

21

21

23

Familiar Robots Wall-E: 2008 Sentinel. X-Men, Days of Future Past: 2014 Data. Star Trek: TNG: 1987 Optimus Prime. Transformers: 2007-current

General Topics

- Overview and Concepts
- Sensing
- Actuators
- Control software
- Motors/motor control
- Locomotion
- Manipulation

- Kinematics
- Localization
- Motion planning
- Machine learning
- Hardware Design
- Cognition
- Human-robot interaction

2

22

Some 21st century robots

24

24

What is a Robot?

"A robot is a reprogrammable, multifunctional manipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for the performance of a variety of tasks." (Robot Institute of America)

Autonomous?

Humanoid? • Mobile?

Physical?

Sensory?

Manipulative?

 Humanfriendly? Intelligent?What else?

25

Robots Now

As technology improves:

- Smaller
- Cheaper
- More broadly capable
- Can consider deploying in human-centric environments
 - Homes
 - Schools
 - Care facilities

Requires: flexibility and human-robot interaction (HRI).

Robots Up to Now

Robots now:

- Expensive
- Complex
- Special-purpose
- Environments
 - Dedicated
 - Constrained

Controlled by trained experts

Slow and expensive to reconfigure/repurpose


26

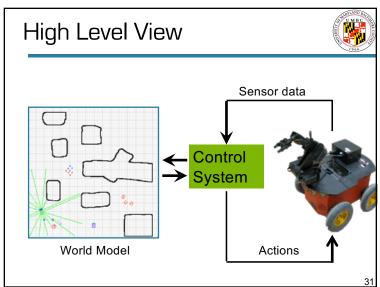
26

What Should They Do?

- Robots are moving away from factory floors to...
 - Entertainment, toys
 - Homes (personal robotics)
 - Medical, surgery
 - Industrial automation (mining, harvesting, warehouses, ...)
 - Hazardous environments (space, underwater, battlefields, ...)
 - Roads
- Research Trends
 - Manipulation of everyday objects
 - Complex household tasks
 - Object recognition, mapping, interaction
 - Human robot interaction

29

What Subsystems Are There?


Sensing

- Perceiving the world
- Creating a world model

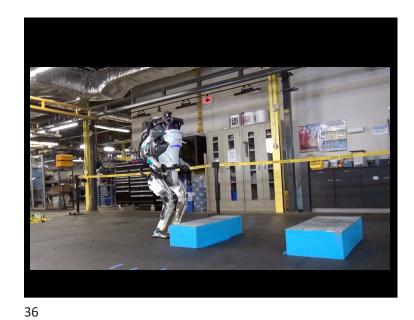
Actuation

- Doing something in the (physical) wor
- Mobility, manipulation, ...
- Control
 - Navigation, motion planning, kinematics, dynamics
- Cognition and Learning
- Interfaces

30

31 32





1/30/20

