Uncertainty and Error
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Uncertainty in Robotics

# Fundamentally, models are imperfect.
@ Sensors aren't perfect

Sensor data
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¢ Probability theory can be applied to these problems

# Key idea: explicit representation of uncertainty using
the calculus of probability theory

Perception state estimation
Action = utility optimization

Example: State Estimation
¢ Is the door open?
# Camera + edge detection says the door is not at right angles

¢ Odometry says I'm 2.0 meters away from door frame
@ Depth sensor says I'm 2.0 meters away from door

» Edge detection pretty
good indoors?

* Odometry very noisy;
could be off by 20cm.

* This specific depth

sensor is very good

High Level View
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Error and Uncertainty
@ Sensing is always related to uncertainty.

¢ What are the sources of uncertainties?

¢ Blown-out camera; iffy rangefinder; skidding wheel;
background noise; poor speech model; what else?

¢ How can uncertainties be represented / quantified
¢ Deterministic vs. random error

¢ How do they propagate?
¢ Uncertainty of a function of uncertain values?

¢ How do uncertainties combine if different sensor reading
are fused?

Distributions
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¢ How can a reading be wrong?
@ Poor surface for your distance sensor
# You may be using an imprecise ranging method
¢ Someone walked in front of it
¢ So where is the door?
Probability Density f{x)

0 Mean y




Vision

¢ What are we looking at?

Using Probability
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¢ Making rational decisions under uncertainty
« Probability
# the precise representation of knowledge and uncertainty
« Probability theory
¢ How to optimally update your knowledge based on new information
# Decision theory: probability theory + utility theory
¢ How to use this information to achieve maximum expected utility

¢ Consider a bus schedule. What's the utility function?
¢ A schedule says the bus comes at 8:05.
Situation A: You have a class at 8:30.
Situation B: You have a class at 8:30, and it’s cold and raining.
Situation C: You have a final exam at 8:30, it’s cold and raining.

Continuous Random Variablgs.

@ X takes on values in the continuum.

¢ p(X=x), or p(x),is a probability density function.

Pr(xE(a,b)) =j'p(x)dx
¢ Eg “

p(x)

Edge
detection?
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Discrete Random Variables

¢ X denotes a random variable.

# X can take countable number of values in {x,, x,, ..., x,}

& P(X=x,) or P(x,) or Pr(x,) is the probability that the
random variable X takes on value x;.

@ P(+) is called its probability mass function.

¢ Eg

P(RoomType) = <0.7,0.2,0.08,0.02>
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Axioms of Probability

¢ Pr(A) denotes probability that proposition A is true.
¢ Axioms (Kolmogorov):
0=P(A)=1
P(True)=1 P(False)=0
P(AvB)=P(A)+P(B)-P(AAB)
¢ Corollaries: .
¢ Assingle random variable must sum to one: EP(D =d)=1

i=l

¢ The joint probability of a set of variables must also sum to |

¢ If A and B are mutually exclusive: P(4 v B) = P(4) + P(B)




Conditionality
¢ P(B|A)
¢ Probability of event B given Event A
- aka -

¢ Event A has already happened,

Now what is the chance of event B?

¢ P(B | A) is the "Conditional Probability” of B given A

Bayes!
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# Probability of an event based on conditions that may
relate to that event

P(x,y)=P(x1y)P(y)=P(ylx)P(x)

=

P(ylx) P(x) _likelihood - prior
P(y) evidence

P(x|y)=

Conditional Dependence
| 17

¢ Two variables XY are conditionally dependent when
P(X) and P(Y) each depend on a third factor, P(Z):

P(x,y|2)=P(x12)P(y2)
=4

P(x|2)=P(x|z,y)
and

P(y|2)=P(y|z.x)

# Alice late / Bob late / Snowing

for all values of X andY

Rules of Probability

¢ Conditional probability
P(AAB)
P(A|B)= ’ P(B»>0
(A| B) P(B) (B>

¢ Corollary: Bayes Law

P(B|4) P(4) = P(4 and B) = P(4|B) P(B)

P(A1B) P(B) _ likelihood ¢ prior
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= P(BJA)=
P(A) evidence
Probability of an event based on a prior:
Conditions that may relate to that event
Independence

@ Two variables XY are independent when the
probability of X is not related to the probability Y:

P(x|y) = P(x)
and

P(x and y) = P(x) - P(y)

for all values of X andY

Alice Bob
late late

@ Is Alice late to work? Is Bob late to work?

Bayes + Background Knowledg
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# Probability of an event based on conditions that may
relate to that event

¢ Example: Does Alice have cancer?
o Alice is 65

@ If cancer is related to age, we can use that knowledge to
improve accuracy of our assessment using Bayes

_P(y|x,2) P(x|2)
P(y|2)

P(x|y,z)




State Estimation

# Suppose a robot obtains measurement z
¢ Z = vision + edge detection

¢ What is P(open|z)!

Example
* P(z|open) = 0.6
& P(open) = P(-open) = 0.5

P(z|=open) = 0.3

P(z|open)P(open)

P(open|z)=
P(z|open)p(open) + P(z| —open) p(-open)

06:05 2 o

P(open|z)=——=
(open|2) 0.6:0.5+0.3-0.5 3

This z gives higher probability that the door is open.

Recursive Bayesian Updating
P(zu|x,21,...,z0-1) P(x| z1,...,Zn-1)
P(zu|z1,...,z0-1)

P(x|zy,...,zn) =

Markov assumption: z, is independent of z,,...,.z,_; if we know x

P(zn|x) P(x|z1,...,20-1)
P(zn|z1,...,20-1)
=1 P(z:|x) P(x|z1,...,20-1)
P(B|A): =, [ [Palx) P(x)
i=l..n

probability of
Bgiven A

P(x|z1,...,z10) =

Casual (Observed) Priors

& P(open|z) is diagnostic.

& P(z|open) is causal.

¢ Often causal Regwledge is easier to obtain.

@ Bayes rule allows us Ysyse causal knowledge:

count frequencies!

P(z| open)P(open)

P(open|z)= PC)
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Combining Evidence

@ Suppose our robot obtains another observation z,.
¢ How can we integrate this new information?

¢ More generally, how can we estimate
P(x| ZI"'Zn)?

Second Measurement

® P(z,lopen) = 0.5

* P(open|z;)=2/3

P(z,|~open) = 0.6

Plopen|z.z) = P(z, | open) Popen| z,)

P(z, |open) P(open|z,)+ P(z, | ~open) P(-open]| z,)
1

23 .5 _ogs
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z, gives higher probability that the door is open.




