Uncertainty and Error

High Level View

Uncertainty in Robotics

- Fundamentally, models are imperfect.
- Sensors aren't perfect
- Actuation isn't either
- But you have to do something
- Probability as uncertainty

- Probability theory can be applied to these problems
- Key idea: explicit representation of uncertainty using the calculus of probability theory

Perception $=$ state estimation
Action $=$ utility optimization

Error and Uncertainty

- Sensing is always related to uncertainty.
-What are the sources of uncertainties?
- Blown-out camera; iffy rangefinder; skidding wheel; background noise; poor speech model; what else?
- How can uncertainties be represented / quantified
- Deterministic vs. random error
- How do they propagate?
- Uncertainty of a function of uncertain values?
- How do uncertainties combine if different sensor reading are fused?

Distributions

- How can a reading be wrong?
- Poor surface for your distance sensor
- You may be using an imprecise ranging method
- Someone walked in front of it
- So where is the door?

Using Probability

- Making rational decisions under uncertainty
- Probability
- the precise representation of knowledge and uncertainty
- Probability theory
- How to optimally update your knowledge based on new information
- Decision theory: probability theory + utility theory
- How to use this information to achieve maximum expected utility
- Consider a bus schedule. What's the utility function?
- A schedule says the bus comes at 8:05.

Situation A: You have a class at 8:30.
Situation B: You have a class at 8:30, and it's cold and raining. Situation C: You have a final exam at 8:30, it's cold and raining.

Discrete Random Variables

- X denotes a random variable.
- X can take countable number of values in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- $P\left(X=x_{i}\right)$ or $P\left(x_{i}\right)$ or $\operatorname{Pr}\left(x_{i}\right)$ is the probability that the random variable X takes on value x_{i}.
$-P(\cdot)$ is called its probability mass function.
- E.g.

$$
P(\text { RoomType })=\langle 0.7,0.2,0.08,0.02\rangle
$$

Continuous Random Variablesi

- X takes on values in the continuum
- $p(X=x)$, or $p(x)$, is a probability density function.
E.g.

$$
\operatorname{Pr}(x \in(a, b))=\int_{a}^{b} p(x) d x
$$

Axioms of Probability

- $\operatorname{Pr}(A)$ denotes probability that proposition A is true.
- Axioms (Kolmogorov):

$$
\begin{aligned}
& 0 \leq \mathrm{P}(A) \leq 1 \\
& \mathrm{P}(\text { True })=1 \quad \mathrm{P}(\text { False })=0 \\
& \mathrm{P}(A \vee B)=\mathrm{P}(A)+P(B)-\mathrm{P}(A \wedge B)
\end{aligned}
$$

- Corollaries:
- A single random variable must sum to one: $\sum_{i=1}^{n} P\left(D=d_{i}\right)=1$
- The joint probability of a set of variables must also sum to I
- If A and B are mutually exclusive: $P(A \vee B)=P(A)+P(B)$

Conditionality

- $P(B \mid A)$
- Probability of event B given Event A
- aka -
- Event A has already happened,

Now what is the chance of event B?
$-P(B \mid A)$ is the "Conditional Probability" of B given A

Rules of Probability

Conditional probability

$$
P(A \mid B)=\frac{P(A \wedge B)}{P(B)}, \quad P(B)>0
$$

- Corollary: Bayes Law

$$
P(B \mid A) P(A)=P(A \text { and } B)=P(A \mid B) P(B)
$$

$\Rightarrow \quad P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}=\frac{\text { likelihood } \cdot \text { prior }}{\text { evidence }}$
Probability of an event based on a prior: Conditions that may relate to that event

Independence

- Two variables X, Y are independent when the probability of X is not related to the probability Y :

- Is Alice late to work? Is Bob late to work?

Bayes + Background Knowledge

- Probability of an event based on conditions that may relate to that event

Example: Does Alice have cancer?

- Alice is 65
- If cancer is related to age, we can use that knowledge to
improve accuracy of our assessment using Bayes

$$
P(x \mid y, z)=\frac{P(y \mid x, z) P(x \mid z)}{P(y \mid z)}
$$ B

\qquad

Conditional Dependence

- Two variables X, Y are conditionally dependent when $P(X)$ and $P(Y)$ each depend on a third factor, $P(Z)$:

State Estimation

- Suppose a robot obtains measurement z
- $Z=$ vision + edge detection

What is $P($ open $\mid z)$?

Casual (Observed) Priors

- $P($ open $\mid z)$ is diagnostic.
- $P(z \mid$ open $)$ is causal.
- Often causal Aewledge is easier to obtain.
- Bayes rule allows us tquse causal knowledge:

$P($ open $\mid z)=\frac{P(z \mid \text { open }) P(\text { open })}{P(z)}$

Combining Evidence

- Suppose our robot obtains another observation z_{2}.
- How can we integrate this new information?
- More generally, how can we estimate $P\left(x \mid z_{l} \ldots z_{n}\right)$?

Recursive Bayesian Updatingid 24
 $$
P\left(x \mid z_{1}, \ldots, z_{n}\right)=\frac{P\left(z_{n} \mid x, z_{1}, \ldots, z_{n-1}\right) P\left(x \mid z_{1}, \ldots, z_{n-1}\right)}{P\left(z_{n} \mid z_{1}, \ldots, z_{n-1}\right)}
$$
 Markov assumption: z_{n} is independent of z_{1}, \ldots, z_{n-1} if we know x
 $$
\begin{aligned} P\left(x \mid z_{1}, \ldots, z_{n}\right) & =\frac{P\left(z_{n} \mid x\right) P\left(x \mid z_{1}, \ldots, z_{n-1}\right)}{P\left(z_{n} \mid z_{1}, \ldots, z_{n-1}\right)} \\ & =\eta P\left(z_{n} \mid x\right) P\left(x \mid z_{1}, \ldots, z_{n-1}\right) \\ \begin{array}{c} P(B \mid A): \\ \text { probability of } \end{array} & =\eta_{1 . . . n} \prod_{i=1 . . . n} P\left(z_{i} \mid x\right) P(x) \end{aligned}
$$

Second Measurement

$$
\bullet P\left(z_{2} \mid \text { open }\right)=0.5 \quad P\left(z_{2} \mid \neg \text { open }\right)=0.6
$$

$$
\text { - } P\left(\text { open } \mid z_{J}\right)=2 / 3
$$

$$
\begin{aligned}
P\left(\text { open } \mid z_{2}, z_{1}\right) & =\frac{P\left(z_{2} \mid \text { open }\right) P\left(\text { open } \mid z_{1}\right)}{P\left(z_{2} \mid \text { open }\right) P\left(\text { open } \mid z_{1}\right)+P\left(z_{2} \mid \neg \text { open }\right) P\left(\neg \text { open } \mid z_{1}\right)} \\
& =\frac{\frac{1}{2} \cdot \frac{2}{3}}{\frac{1}{2} \cdot \frac{2}{3}+\frac{3}{5} \cdot \frac{1}{3}}=\frac{5}{8}=0.625
\end{aligned}
$$

[^0]
[^0]: z_{2} gives higher probability that the door is open.

