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Uncertainty and Error 

Many slides adapted from slides © R. Siegwart, Steve Seitz, J. Tim Oates 
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u  Fundamentally, models are imperfect.
u  Sensors aren’t perfect
u  Actuation isn’t either
u  But you have to do something

u  Probability as uncertainty
u  Probability theory can be applied to these problems

u  Key idea: explicit representation of uncertainty using 
the calculus of probability theory
    Perception =  state estimation
          Action =  utility optimization

u  • review of basis probabilistic concepts 

u  - discrete and continuous probability - joint and 
marginal probability�
- calculating probability 

u  • next probability lecture: the process of probabilistic 
inference 

Uncertainty in Robotics 
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u  Sensing is always related to uncertainty. 

u  What are the sources of uncertainties?
u  Blown-out camera; iffy rangefinder; skidding wheel; 

background noise; poor speech model; what else?

u  How can uncertainties be represented / quantified
u  Deterministic vs. random error

u  How do they propagate?
u  Uncertainty of a function of uncertain values?
u  How do uncertainties combine if different sensor reading 

are fused?

Error and Uncertainty 
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u  Is the door open?
u  Camera + edge detection says the door is not at right angles
u  Odometry says I’m 2.0 meters away from door frame
u  Depth sensor says I’m 2.0 meters away from door

Example: State Estimation 

•  Edge	detection	pretty	
good	indoors?	

•  Odometry	very	noisy;	
could	be	off	by	20cm.	

•  This	speci=ic	depth	
sensor	is	very	good	
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Distributions 
u  How can a reading be wrong?

u  Poor surface for your distance sensor 
u  You may be using an imprecise ranging method
u  Someone walked in front of it
u  So where is the door?
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Vision 
u  What are we looking at?
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Vision 

Edge	
detection?	
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u  Making rational decisions under uncertainty 
u  Probability

u  the precise representation of knowledge and uncertainty 
u  Probability theory

u  How to optimally update your knowledge based on new information 
u  Decision theory: probability theory + utility theory

u  How to use this information to achieve maximum expected utility 

u  Consider a bus schedule. What’s the utility function?
u  A schedule says the bus comes at 8:05.

	Situation	A:		You	have	a	class	at	8:30.	
	Situation	B:		You	have	a	class	at	8:30,	and	it’s	cold	and	raining.	
	Situation	C:		You	have	a	=inal	exam	at	8:30,	it’s	cold	and	raining.	

Using Probability 
10 
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Discrete Random Variables 
u  X denotes a random variable.

u  X can take countable number of values in {x1, x2, …, xn}

u  P(X=xi) or P(xi) or Pr(xi) is the probability that the 
random variable X takes on value xi. 

u  P(•) is called its probability mass function.

u  E.g.

P(RoomType) = 0.7, 0.2, 0.08, 0.02
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Continuous Random Variables 
u  X takes on values in the continuum.

u  p(X=x), or p(x), is a probability density function.�

u  E.g.
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Axioms of Probability 
u  Pr(A) denotes probability that proposition A is true.

u  Axioms (Kolmogorov):

u  Corollaries: 
u  A single random variable must sum to one:

u  The joint probability of a set of variables must also sum to 1

u  If A and B are mutually exclusive: P(A ∨ B) = P(A) + P(B)  

0 ≤ P(A) ≤1
P(True) =1
P(A∨B) = P(A)+P(B)−P(A∧B)

P(False) = 0

P(D = di ) =1
i=1

n
∑
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u  P(B|A)  
u  Probability of event B given Event A

- aka -

u  Event A has already happened,�
Now what is the chance of event B? 

u  P(B | A) is the “Conditional Probability” of B given A

Conditionality 
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Rules of Probability 
u  Conditional probability 

u  Corollary: Bayes Law

       P(B|A) P(A) = P(A and B) = P(A|B) P(B) 
 
 
 

P(A B) = P(A∧B)
P(B)

P(B)> 0, 

P(B A) = P(A | B) P(B)
P(A)

=
likelihood • prior

evidence
⇒ 

Probability	of	an	event	based	on	a	prior:	
Conditions	that	may	relate	to	that	event	
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u  Probability of an event based on conditions that may 
relate to that event

Bayes! 

P(x, y) = P(x | y)P(y) = P(y | x)P(x)
⇒

P(x y) = P(y | x) P(x)
P(y)

=
likelihood ⋅prior

evidence
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Independence 
u  Two variables X, Y are independent when the 

probability of X is not related to the probability Y:

        P(x|y) = P(x) 

     and

 P(x and y) = P(x) • P(y)

u  Is Alice late to work? Is Bob late to work?

for all values of X and Y

Alice 
late 

Bob 
late 
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Conditional Dependence 
u  Two variables X, Y are conditionally dependent when 

P(X) and P( Y) each depend on a third factor, P(Z):

⇔

 and

u  Alice late / Bob late / Snowing

P(x, y z)=P(x | z)P(y | z)

),|()( yzxPzxP =

),|()( xzyPzyP =

for all values of X and Y

Alice 
late 

Bob 
late 

Snow
-ing 
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Bayes + Background Knowledge 

u  Probability of an event based on conditions that may 
relate to that event

u  Example:  Does Alice have cancer? 
u  Alice is 65
u  If cancer is related to age, we can use that knowledge to 

improve accuracy of our assessment using Bayes

)|(
)|(),|(),|(

zyP
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u  Suppose a robot obtains measurement z 
u  Z = vision + edge detection

u  What is P(open|z)?

State Estimation 
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u  P(open|z) is diagnostic.

u  P(z|open) is causal.

u  Often causal knowledge is easier to obtain.

u  Bayes rule allows us to use causal knowledge:

)(
)()|()|( zP

openPopenzPzopenP =

count	frequencies!	

Casual (Observed) Priors 
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Example 
u  P(z|open) = 0.6    P(z|¬open) = 0.3 

u  P(open) = P(¬open) = 0.5 
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This	z	gives	higher	probability	that	the	door	is	open.	
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Combining Evidence 
u  Suppose our robot obtains another observation z2.

u  How can we integrate this new information?

u  More generally, how can we estimate�
P(x| z1...zn )?
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Recursive Bayesian Updating 
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Markov	assumption:	zn	is	independent	of	z1,...,zn-1	if	we	know	x	
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P(B|A):	
probability of �
B	given	A	

WTF is the eta here? 
What’s going on? 
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u  P(z2|open) = 0.5  P(z2|¬open) = 0.6 

u  P(open|z1)=2/3 
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z2	gives	higher	probability	that	the	door	is	open.	

Second Measurement 

Figure this shit out 


