

Where We Are

Last Time

- Time-of-flight sensors
- Line fitting ("Edge detection')
- Plane fitting
- Split-and-Merge algorithm
- We will not cover line regression or Houghtransforms in class
- Testing homework fix

This Time

- RANSAC
- Error
- Motors - I hope!

Overall

- We're behind, but mostly because we're having good discussions.

RANSAC Algorithm

- Random Sample Consensus ("Ran-sack")
- General, robust algorithm to fit models in the presence of outliers
- Good tool when goal is to identify points that satisfy a mathematical model or function (like a line)
- Typical applications in robotics
- Line extraction from 2D range data
- Plane extraction from 3D range data
- Structure from motion

RANSAC Algorithm

- RANSAC is an iterative method
- Drawback: A nondeterministic method, results are different between runs.
- Probability to find a line without outliers increases as more iterations are used

Algorithm 3: RANSAC

Algorithm 4: RANSAC

[^0]

Algorithm 3: RANSAC

Algorithm 4: RANSAC

1. Initial: let A be a set of N points
2. repeat
3. Randomly select a sample of 2 points from A
4. Fit a line hrough the 2 points
5. Compute the distances of all other points to this line
6. Construct the inlier set (i.e. count the number of points with distance to the line $<d$)
7. Store these inliers
8. until Maximum number of iterations k reached
9. The set with the maximum number of inliers is chosen as a solution to the problem

How Many Iterations?

- How many iterations does RANSAC need?
- Can't know in advance if observed set contains maximum number of inliers
- Ideal: check all possible combinations of 2 points
- $N(N-I) / 2$ (for a line) - infeasible if N is too large
- Do not need to check all combinations - just a subset if we have a rough estimate of the percentage of inliers in our dataset
- This can be done in a probabilistic way

RANSAC Iterations

- Let w be fraction of inliners: w = number of inliers / N
- N is the total number of points.
- w represents also the probability of selecting an inlier
- $p=$ probability of finding a set of points free of outliers
- w2: probability that both points are inliers
- 1-w2: is the probability that at least one of these two points is an outlier

$$
k=\frac{\log (1-p)}{\log \left(1-w^{2}\right)}
$$

- For every cell, use Ransac to segment the best plane

Example Result

Experimental Results

[^0]: 1. Initial: let A be a set of N points
 2. repeat
 3. Randomly select a sample of 2 points from A
 4. Fit a line through the 2 points
 5. Compute the distances of all other points to this line
 6. Construct the inlier set (i.e. count the number of points with distance to the line $<d$)
 7. Store these inliers
 8. until Maximum number of iterations k reached
 9. The set with the maximum number of inliers is chosen as a solution to the problem
