

Correspondence

- Two cameras see slightly different scenes
-What points in one correspond to points in the other?
- Compare all points in image to all points in other image
- This image search can be computationally expensive, imperfect

Structured Light

- Light is distorted by object it is falling on
- Two kinds of distortion: size and shape

Summary

Stereo camera calibration \rightarrow compute camera relative pose

- Epipolar rectification \rightarrow align images

2. Search correspondences
3. Output: compute stereo triangulation or disparity map
4. Consider baseline and image resolution to compute accuracy!

Scanning Range Sensing

- Confidence in the range (phase estimate) is inversely proportional to the square of the received signal amplitude.
- Dark or distant objects \rightarrow worse estimates than closer brighter objects

Figure 4.11
a) Schematic drawing of laser range sensor with rotating mirror: (b) Scanning range sensor from EPS Technologies Inc.; (c) Industrial 180 degree laser range sensor from Sick Inc., Germany

Range: Time-of-Flight

- Time-of-flight uses propagation speed of waves
- Sound or electromagnetic
- Distance traveled by a wave is:

$$
d=c \cdot t
$$

$d=$ distance traveled (round-trip)
$c=$ speed of wave propagation
$t=$ time of flight

Time-of-Flight: Accuracy

- Sources of inaccuracy:
- Uncertainties about exact time of arrival of the reflected signal
- Inaccuracies in the time of flight measure (laser range sensors)
- Opening angle of transmitted beam (ultrasonic range sensors)
- Interaction with the target (surface, specular reflections)
- Variation of propagation speed
- Propagation speed of sound: $0.3 \mathrm{~m} / \mathrm{ms}$
- Propagation speed of of electromagnetic signals: $0.3 \mathrm{~m} / \mathrm{ns}$ - One million times faster.
- Laser range sensors expensive and delicate.
- Speed of mobile robot and target

Sonar: Speed

- Transmit a packet of (ultrasonic) pressure waves

Distance d of the echoing object can be $\quad d=\frac{c \cdot t}{2}$ found from propagation speed of sound c and the time of flight t .

Sonar: Bandwidth

An object that is 3 m away will take 20 ms , limiting its operating speed to 50 Hz .

- This update rate can affect maximum speed possible while still sensing and avoiding obstacles safely.
- But if the robot has a ring of 20 ultrasonic sensors, each firing sequentially and measuring to minimize interference between the sensors, then the ring's cycle time becomes 0.4 seconds $=>$ frequency of each one sensor $=2.5 \mathrm{~Hz}$.

Example of Scanning

- Length of the lines through measurement points indicate uncertainty

Line and Plane Features

Features: Motivation

Why Features?

- Raw data: huge amount of data to be stored*
- Compact features require less storage (e.g. Lines, planes)
- Provides rich and accurate information
- Basis for high level features (e.g. more abstract features, objects)

Example Result

Line Extraction

- Algorithms:
- Split and merge
- Linear regression
- RANSAC
- Hough-Transform

Line Extraction: Motivation

- Why laser scanner:
- Dense and accurate range measurements
- High sampling rate, high angular resolution
- Good range distance and resolution.
- Why line segment:
- The simplest geometric primitive
- Compact, requires less storage
- Provides rich and accurate information
- Represents most office-like environment.

Line Extraction: The Problem酸

 41- Scan point in polar form: $\left(\rho_{\mathrm{i}}, \theta_{\mathrm{i}}\right)$
- Assumptions:
- Gaussian noise with $(0, \sigma)$ for ρ
- Negligible angular uncertainty
- Line model in polar form:

- $x \cos \alpha+y \sin \alpha=r$
- $-\pi<\alpha<=\pi$
- $r>=0$

Split-and-Merge

- The most popular algorithm
- Originated from computer vision.
- A recursive procedure of fitting and splitting.
- A slightly different version, called Iterative-End-PointFit, simply connects the end points for line fitting.

Algorithm 1: Split-and-Merge wa

Algorithm 1: Split-and-Merge

1. Initial: set s_{1} consists of N points. Put s_{1} in a list L
2. Fit a line to the next set s_{i} in L
3. Detect point P with maximum distance d_{p} to the line
4. If d_{P} is less than a threshold, continue (go to step 2)
5. Otherwise, split s_{i} at P into $s_{i 1}$ and $s_{i 2}$, replace s_{i} in L by $s_{i 1}$ and $s_{i 2}$, continue (go to 2) 6. When all sets (segments) in L have been checked, merge collinear segments.

Split-and-Merge Example

