

How do we see the world?

- Designing a camera
- Idea I: put a piece of film in front of an object
-Do we get a reasonable image?

The Camera

- Parameters
- Light allowed in (aperture)
- Shutter speed
- Resolution
- Gain/Saturation
- Focus and focal depth
- Failure modes
- Blue-to-red sensitivity
- Cross-sensitivity
- Dynamic range

Pinhole camera

- Add a barrier to block off most of the rays
- This reduces blurring
- The opening is known as the aperture

-Why not make the aperture as small as possible? - Less light gets through (must increase the exposure) - Diffraction effects...

A lens focuses light onto the film

- Rays passing through the center are not deviated

Range (Distance) Sensors

- Range sensors - how far is robot from something?
- Key element for localization and environment modeling
- Stereo
- Humans; Bumblebee/Bb2
- Time-of-Fligh
- Laser
- Sonar
- Kinect 2
- Structured Light
- Kinect

Stereo Vision Accuracy

- Simplified: assume cameras are
- Identical
- Aligned on a horizontal axis
$b=$ baseline: distance between optical centers of cameras
$f=$ focal length
$v-v^{\prime}=$ disparity between views
- Distance is inversely proportional to disparity
- Closer objects can be measured more accurately
- Disparity is proportional to b
- For a given disparity error, the accuracy of the depth estimate increases with increasing baseline b
- However, as b is increased, some objects may appear in one camera, but not in the other
- Increasing image resolution improves accuracy

Correspondence

- Two cameras see slightly different scenes
-What points in one correspond to points in the other?
- Compare all points in image to all points in other image
- This image search can be computationally expensive, imperfect

Calibration and Alignment

 21- Two identical cameras do not exist in nature
- Aligning cameras perfectly on a horizontal axis is hard

- Need to estimate relative pose between cameras
- Rotation and translation - and since cameras are not identical, also - focal length, image center, radial distortion
- Epipolar rectification: compare two feature-rich images

Summary

Stereo camera calibration \rightarrow compute camera relative pose

- Epipolar rectification \rightarrow align images

2. Search correspondences
3. Output: compute stereo triangulation or disparity map
4. Consider baseline and image resolution to compute accuracy!

Structured Light

- Eliminate correspondence problem by projecting known light on the scene
- Light perceived by camera
- Range to an illuminated point can then be determined from geometry

Structured Light

Microsoft Kinect

- Light is distorted by object it is falling on
- Two kinds of distortion: size and shape

