Intro to Sensing Characterizing Sensors Pose and Location Image: Characterizing Sensors Image: Characterizing Sensors Pose and Location Image: Characterizing Sensors Image: Char

<section-header><section-header><section-header><text><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Exteroceptive/Proprioceptive

• Exteroceptive sensors

- Retrieve information from the robot's environment
- This is most of what we think of when we think "sensors"
- Examples?

camera bump sensors thermometer range finder

- **Proprioceptive** sensors
 - Measure values internal to the system (robot)
 - Just as common and just as important
 - Examples?

battery status joint encoders wheel load

Adapted from © R. Siegwart, ETH Zürich – ASL

Passive/Active

Passive sensors

- Don't send anything "out"
- Energy comes from the environment
- Examples?

camera thermometer microphone e-field sensor

- Active sensors
 - Emit energy and measure the reaction
 - Better performance, but influences environment
 - Examples?

sonar/lidar camera with flash x-rays

Adapted from © R. Siegwart, ETH Zürich – ASI

Sensor sor System tches, bumpers iers proximity sensors	PC or EC F EC A EC A EC A	A or P
tches, bumpers E iers E proximity sensors E	EC F EC A EC A) A
		1
lers P ers P solvers P ders P coders P coders P encoders P	PC F PC F PC A PC A PC A PC A	
rs E	EC F PC F EC A	а. А/Р
5	rs EC, exterocept	encoders r. / / EC / PC F ers EC / / sceptive; EC, exteroceptive.

General Classification (2) General classification (typical use) Sensor Sensor System PC or EC A or P Ground-based beacons GPS EC (localization in a fixed reference Active optical or RF beacons EC EC frame) Active ultrasonic beacons Reflective beacons EC А Reflectivity sensors Active ranging (reflectivity, time-of-flight, and geo-EC A A Ultrasonic sensor EC Laser rangefinder Optical triangulation (1D) metric triangulation) EC А EC A A Structured light (2D) EC Doppler radar EC Motion/speed sensors A A (speed relative to fixed or moving Doppler sound EC objects) Vision-based sensors CCD/CMOS camera(s) EC (visual ranging, whole-image analy-sis, segmentation, object recognition) Visual ranging packages Object tracking packages Adapted from © R. Siegwart, ETH Zürich

Range and Resolution

- Range: what's the range of returnable values?
 - Upper limit, lower limit

11

- For a rotation sensor, range is..?
- Resolution: how fine-grained are those values?
 - Minimum measurable difference between two values
 - ◆ For a rotation sensor: 2 degrees? 5? 0.1?

Adapted from © R. Siegwart, ETH Zürich – ASL

Linearity and Bandwidth

Linearity

12

- variation of output signal as function of the input signal
- linearity is less important when signal is after treated with a computer
- Bandwidth or Frequency
 - the speed with which a sensor can provide a stream of readings
 - usually there is an upper limit depending on the sensor and the sampling rate
 - Lower limit is also possible, e.g. acceleration sensor

Adapted from © R. Siegwart, ETH Zürich – ASL

Sensitivity

Characteristics that are especially relevant for real world environments

Sensitivity

13

- + How much change in world affects change in sensor readings
- Ratio of output change to input change
- ${\ensuremath{\bullet}}$ High sensitivity often correlated to high cross-sensitivity

Cross-sensitivity

- Sensitivity to environmental parameters unrelated to target parameters
- In a real world environment, a sensor has very often high sensitivity to confounding environmental changes
 - Example: Illumination

Adapted from © R. Siegwart, ETH Zürich – AS

Some Important Senses: Pose and Location

