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Robotic Mapping:  �
A (High-Level) Survey

Sebastian Thrun, 2002 
Original presentation: David Black-Schaffer, Kristof Richmond 
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u  Final milestone due at the very end of the semester

u  You should have implemented (and turned in) your 
final strategy
u  Improvements, tweaks and bug-hunting are okay
u  You shouldn’t be doing major software changes now!

u  Milestone 5 code is what you will run at the end

u  (Much of) this time is for writeup

u  Project description gives high-level goals
u  But you should know how to write a research paper

Project 
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u  Shorter than HW3

u  Primarily about localization and mapping

u  More conceptual, but still leave time for it

HW 4 
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u  Building a model of the robot’s environment 
u  Based on sensor data obtained in that environment

u  Many different environment representations exist

u  Mapping means constructing one
u  Based on sensor data
u  Doesn’t have to be geometric

What is Mapping? 
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u  Can you do mapping without localization?
u  Sort of.

u  Gathering environment data doesn’t depend on 
knowing where you are, but…

u  If you don’t track robot’s location, the relative position 
of different sensor readings is harder to calculate

u  Some problems (e.g., loop closure) may be impossible

Mapping ≠ SLAM? 
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u  By hand?
u  Slow, expensive and imprecise

u  Automatically: Mapping
u  The robot learns its environment

u  Can cope with dynamically �
changing environment

u  Map is built from sensors that will be used to navigate

How to Get a Map? 

123.5
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Basic Mapping Task 

https://www.youtube.com/watch?v=eAbF3QBGwzA 
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Historical Overview 
u  Metric Mapping

u  Geometric representations
u  Occupancy Grids
u  Larger maps much more computationally intensive

u  Topological Mapping
u  Milestones with connections
u  Require navigation information
u  Hard to scale
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u  Measurement noise
u  Sensor and position noise are not independent

u  Map size
u  High resolution maps can be very large

u  Correspondence
u  Do multiple measurements at different times correspond to 

the same object?
u  Loop closure is a subset of this

u  Dynamic environments
u  Many algorithms assume a static environment

The Problems 
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u  Basic requirements:

u  A way to incorporate sensed information into world 
model

u  Sufficient information for navigation tasks
u  Estimating position, path planning, obstacle avoidance, …

u  Correctness

u  Predictability
u  Most environments are a mixture of predictable and 

unpredictable features

Mapping 
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Mapping 
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u  Map Maintenance: keeping track of changes in the 
environment

u  Often uses a measure of belief of each feature

u  If localizing: did the world change, or are you lost?

Challenges: Maintenance 

?
example:  

disappearing 
cupboard 
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Challenges: Cyclic Environments 
u  Small local error accumulates

u  This is usually irrelevant for navigation

u  However, when closing loops, global error does matter

Courtesy of Sebastian Thrun 
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Dynamic Environments 
u  Dynamic changes require 

continuous (re-)mapping

u  High-level features help if you 
can get them
u  Humans are more dynamic map 

features than walls
u  Can also learn that certain things 

are dynamic over time ?

navigate around 
cupboard… 
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Current State of Mapping 
u  Algorithms

u  Robust for static, structured, and limited-size environments
u  Probabilistic
u  Correspondence problem
u  Incremental vs. Multi-pass

u  Incremental algorithms only need one “pass” through data, and can 
possibly be run in real time

u  Continuing areas
u  Dynamic environments
u  Semantic labeling of environments
u  Planning exploration paths of unknown environments
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u  Noise in commands and sensors
u  Commands are not executed exactly �

(e.g., slippage leads to odometry errors)
u  Sensors noise due to real world�

(e.g., angle of incidence and scattering)

u  Noise is not statistically independent
u  Control errors accumulate with time/distance
u  Can’t “average out” noise

Why Probabilistic Mapping? 

basically everything 
we’ve ever covered 
about error   
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Command Noise 
u  Odometry Errors: heading and distance measurements 

accumulate errors with time
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Sensor Noise 
u  Sensor probability model depends on the characteristics of 

the sensor and the object being sensed

Basic sonar probability model for 
angle of incidence = 0
Z-axis = P(s|d at angle = 0)
sigma: std. deviation for gaussian 
return from ideal surface
lambdaF: false positive rate
lambdaS: missed rate
d: distance to target on map
s: measured distance from sonar
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u  p(x | d) =  η p(d | x) p(x)*

u  p(x | d) is the probability of (the map) x being true given 
the (sensor) measurement d

u  p(d | x) is the probability of the (sensor) measurement 
being being d given (an object at) x

u  p(x) is the prior probability (of the map)

Bayes Rule 

* η = normalization constant 
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Bayes Rule over Time 
u  Notation

u  s = pose of robot (x, y, Θ)
u  u = command given to robot
u  z = sensor measurement
u  m = map

u  All are functions of time
u  zt = sensor measurements at time t
u  zt = all sensor measurements up to time t
u  (same for s, u, and m)
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Bayes Filter 

u  Probability of a location (pose) and a map, given 
sensor readings and command.

u  p(zt | st, m) is the sensor model

u  p(st | ut, st-1) is the motion model

u  p(st-1, m | zt-1, ut-1) is probability we were actually 
where we thought we were last timestep

Sensor and motion models are usually static

€ 

p(st ,m | z
t ,ut ) =η ⋅ p(zt | st ,m) p(st | ut , st−1)p(st−1,m | z

t−1,ut−1)dst−1∫

s: robot pose
u: command
z: sensor reading
m: map
☐t /☐t: value at/up to time t
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SLAM 
u  SLAM

u  Simultaneous Localization And Mapping
u  Figure out where we are and what our world looks like at 

the same time

u  Localization
u  Where are we?
u  Position error accumulates with movement

u  Mapping
u  What does the environment look like?
u  Sensor error (not independent of position error)

26 

u  Can you do mapping without localization?
u  Sort of.

u  Gathering environment data doesn’t depend on 
knowing where you are, but…

u  If you don’t track robot’s location, the relative position 
of different sensor readings is harder to calculate

u  Some problems (e.g., loop closure) may be impossible

Mapping ≠ SLAM? 
27 

Monte Carlo Localization 
u  Probabilistic

1.  Start with a uniform distribution of possible poses�
(x, y, Θ)

2.  Compute the probability of each pose given current sensor 
data and a map

3.  Normalize probabilities
u Throw out low probability points
u Blur current points (we never know exactly where we are)

u  Performance
u  Excellent in mapped environments
u  Need non-symmetric geometries



5/3/18 

5 

28 

Monte Carlo Localization 

Thrun, Sebastian. “Animation of Monte Carlo Localization using laser range finders” 
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Monte Carlo SLAM 

Thrun, Sebastian. “Animation: Online mapping with Monte Carlo Localization.” 
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Kalman EM Occupancy 
Grids

Dogma

Representation Landmark 
Locations

Point 
Obstacles

Occupancy 
Grids

Occupancy 
Grids

Incremental YES NO YES NO

Requires Poses NO NO YES YES

Handles 
Correspondence NO YES YES YES

Dynamic 
Environments limited NO limited YES

Mapping Methods 
32 

u  Pros:
u  Full (Gaussian) posterior probabilities
u  Incremental
u  Good convergence

u  Cons:
u  Limited model
u  Correspondence problem
u  Limited map size

u  Many improvements exist! 

Kalman Filter Performance 
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Particle Filter SLAM 

https://www.youtube.com/watch?v=khSrWtB0Xik 
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u  Find most likely map (and poses)

1.  Expectation step: 

u  Calculate probabilities of robot poses for 
current guess of map

2.  Maximization step:

u  Calculate single most likely map for distribution 
of robot poses

u  Iterate

Expectation Maximization (EM) 
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EM Performance 
u  Pros:

u  Resolves correspondences

u  Cons:
u  Non-incremental
u  No posterior probabilities for map
u  Slow
u  Greedy

u  Improvements: Hybrid approaches
u  Incremental computation
u  Maintain a few possible robot poses
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Occupancy Grids 
u  Impose grid on space to be mapped

u  Find inverse sensor model

p(mx,y|zt,st)

u  Update odds that grid cells are occupied

38 

Occupancy Grid (simple) 

https://www.youtube.com/watch?v=zOj4s9TEmg8 
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Occupancy Grid (real) 

https://www.youtube.com/watch?v=iD47JWVqTCk 
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Occupancy Grids 

u  Pros
u  Simple
u  Accurate
u  Incremental

u  Cons
u  Require known poses
u  Independence 

assumptions

u  Extensions: �
Object Maps
u  Reduced memory 

requirements
u  Better for dynamic 

environments
u  Limited by available 

object models

43 

Object Maps 
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Dynamic Environments 
u  Kalman filters

u  Decaying occupancy grids

u  Dogma
u  Dynamic occupancy grid mapping algorithm

45 

A Real Example 

https://www.youtube.com/watch?v=o1GSQanY-Do 

Using a Laser and 
an RGB-D Sensor 
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u  Turning percepts (sensor readings) into a model of 
an environment (a map)
u  Maps come in many forms
u  Must have sufficient information for navigation tasks
u  Estimating position, path planning, obstacle avoidance, …

u  Many challenges
u  Difficult environments: cycles, dynamism, …
u  Sensor noise and precision
u  Actuator noise
u  Labeling environment

Mapping 
47 

u  Many algorithms exist

u  All modern approaches are probabilistic

u  Many are particle filter based

u  Usually SLAM is involved
u  Doesn’t strictly have to be

u  Different approaches address different challenges

Approaches 

Cognition and Control 
 

49 

Cognition and Mobility 

The image 
cannot be 
displayed. 

The image 
cannot be 
displayed. 

The image 
cannot be 
displayed. 

The image 
cannot be 
displayed. 

“Position”: 
Global map 

Perception Motion 
Control 

Cognition 

Real World 
Environment 

Localization 

Path Environment Model 
Local Map 

Sensors Actuation 
Kinematics 

Path Planning 

Mapping 
Localization 

Representation 

Route planning 
Task planning 

… 
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u  Autonomous robots…
u  Perform their tasks in the world by themselves
u  Do not require human control / intervention
u  Learn about their environment and tasks
u  Avoid damage (to themselves, people, property)
u  Adapt to changing situations
u  Make and execute decisions
u  Possess some degree of self-sufficiency

u  Intelligently and safely perform tasks

u  Without direct human control

What Is Autonomy? 

All of 
these? 
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u  Key types
u  Strong AI: mental/thought capabilities�

equal to (or better than) human
u  Weak (bounded) AI: intelligent actions or �

reasoning in some limited situations

u  These are problematic
u  How do we measure it?
u  What’s an ‘intelligent action’?

u  In practice, ‘previously human only’
u  Is there something ineffable missing?

u  How does it change when it’s a robot?

Artificial Intelligence 
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u  Many subtasks
u  Understanding and modeling of the mechanism

u  Kinematics, dynamics, odometry
u  Reliable control of actuators

u  Understanding and modeling the environment
u  Integration of sensors

u  Understanding and modeling the task
u  Generation of task-specific motions
u  Creation of flexible control policies, new situations

u  Coping with noise and uncertainty

u  Probably physical tasks!

Autonomous Task Performance 
53 

u  Knowledge Representation

u  Search

u  Planning

u  Learning

u  Inference

Intelligent Action Needs… 

54 

DARPA Grand Challenge 1 
55 

DGC 1 Challenges 
u  Localization

u  But not mapping

u  Sensor management
u  What sensors?
u  Where’s the road?

u  Narrow pass
u  Switchbacks, turns
u  Tunnels

u  Actuator management

✓  		Knowledge	
		Representation		

✓  		Search	
✓  		Planning	
✗  Learning	
✗  Inference	
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DARPA  Grand Challenge 2 
57 

DGC 2 Challenges 
u  All of the above, plus…

u  Visual parsing of traffic elements
u  Sensing + Knowledge

u  Awareness of other cars
u  Sensing + Planning

u  Non-3D-guided tasks

u  Faster speeds

u  Safety

✓  		Knowledge	
		Representation		

✓  		Search	
✓  		Planning	
✗  Learning	
✓  		Inference	
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Google Self-Driving Car 
59 

Google Challenges 
u  All of the above, plus…

u  Sublimely oblivious drivers

u  Full-speed actuator management

u  Legal management

u  Ethical management

✓  		Knowledge	
		Representation		

✓  		Search	
✓  		Planning	
?  		Learning	
✓  		Inference	
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DARPA Robot Challenge 1 
61 

DRC 1 Challenges 
u  All of the above, plus…

u  Non-designed environment
u  Balancing
u  (Much) harder actuation
u  Bipedal motion

u  Yet more sensor hassles

u  Weight, power

u  Manipulation
u  !!!

✓  		Knowledge	
		Representation		

✓  		Search	
✓  		Planning	
✓  		Learning	
✓  		Inference	
✗  Autonomy	
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DRC 1 
63 

Robocup 

64 

Robocup 
u  All of the above, plus…

u  Object interaction
u  Balls, walls, ...

u  Deliberately difficult goal task
u  Streets designed for easy driving
u  S&R not designed

u  Enormous robot design space

u  Antagonistic agents

✓  		Knowledge	
		Representation		

✓  		Search	
✓  		Planning	
✓  		Learning	
✓  		Inference	
✓  		Autonomy	
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Other Robot Tasks 
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u  Knowledge Representation

u  Search

u  Planning

u  Learning

u  Inference

Intelligent Action Needs… 
67 

Other Robot Tasks 


