

Kinds of Localization Problem

Position tracking:

- Known start state
- Relatively high precision (low error)
- Usually normal distribution

Global localization:

- Start state can be anywhere/unknown
- Usually initially uniform

"Kidnapped robot" problem:

- Robot "gets moved" to another location (includes losing track of position)
- Key question: does it know this happened?

Markov vs. Kalman Filter Localization

Markov Localization

8

- ◆ Localization starting from any unknown position
 ⇒ Recovers from ambiguous situations
- Update probability of all positions in whole state space at each time
- Uses discretized map representation
 - Cell size matters!
 - Much determined by computational feasibility

Kalman Filter Localization

- Tracks robot as it navigates
- Inherently precise, efficient
- Can work in continuous maps
- Can't recover from ambiguous situations
 - If uncertainty becomes too large, Kalman filter will fail and the position is definitively lost
- For example, colliding with something

Markov Localization: Idea \tag

- Markov localization: explicit, discrete representation for probability of each position in the state space
- Usually represents environment as:
 - Grid or topological graph
 - \Rightarrow ...with **finite** number of possible states (positions)
- During each update, the probability for each state (element) of the entire space is updated
 - This can get expensive!

Markov Localization: Probability

- Prior probability: probability distribution describing likelihood of random variable x having some value before observations
 - p(x) before observation y
 - p(l) = probability of robot being in a particular place l
- Posterior probability: belief that x is some value after observing y
 - $p(l \mid i) = probability of robot being in l, given observation i$
- Divided by some normalization constant p(y)
- Which is constant, so we assign it a label and forget about it

Markov Localization (5)

Map from belief state + sensor input to new belief state:

$$p(l_t|o_t) = \int p(l_t|l_{t-1}, o_t) p(l_{t-1}) dl_{t-1}$$

- Summing over all possible ways in which the robot may have reached *l*.
- Markov assumption: Update depends only on previous state and most recent actions and percepts.
 - Not usually a true assumption, but usually close enough

Markov Localization: Cons

Considering all possible locations at each timestep, so:

less precise

Computationally expensive
 Practical result: discretized maps only

34

- Always evaluating some probability of being in every wrong place
- Minimizes use of observation history
- Can "jump" to the wrong place, too

Kalman Filter Localization

- Markov localization can represent any probability function over robot's location
 - This is general and powerful
 - This is imprecise
- Do we really need a completely arbitrary probability function for position?
 - Can we use our sensors better?
 - Can we use our prior knowledge better?
- ◆ Kalman filters use all information to estimate position

Kalman Filters

Inputs to system:

36

- Control signal
- System error model (uncertainty in dynamics)
 That is, motion error
- All sensors produce measurements
 - With some sensor error
- Kalman filter fuses sensor measurements with system knowledge

The Core Idea*
41
 Treat localization as a sensor fusion problem
 Robot's sensory input (observations) treated as a set of features that relate to objects in the environment
 Kalman filter fuses distance estimate from each feature to an object in the map
• Let's look at how that works for the localization cycle
act \rightarrow estimate \rightarrow observe \rightarrow update estimate \rightarrow act \rightarrow
* We will not break down the theory behind Kalman filters in class: SNS bg. 325–342 do so, with examples.

KF Localization Cycle

42

44

UMBC

- 1. Position estimation: estimate position from odometry
- 2. Measurement prediction: predict what features the robot expects to see at estimated position
 - Given where I (think I) am, what should I see?
- Observation step: Collect percepts & extract features
 Lines/doors/sensor values/... } map representation elements
- 4. Matching: Find best match between observed and expected features (for each feature)
- 5. Estimation step: fuse matches to get updated belief

Kalman Filter Localization

- Position estimate as probability distribution
- Gaussian distribution
 - Only considering estimates "around" a single belief
 Single hypothesis belief state
 - Update step = update mean and variance of initial Gaussian
 - Need approximate starting position
- Precise, efficient, works in continuous environments
- Use sensor fusion to combine estimated observations with actual observations

- Markers or beacons
- ◆ Feasible in, e.g., some factories, the CSEE building
- Infeasible if the robot moves around a lot

Mapping

77

- Basic requirements:
- A way to incorporate sensed information into world model
- Sufficient information for navigation tasks
 - \blacklozenge Estimating position, path planning, obstacle avoidance, \ldots
- Correctness
- Predictability
 - Most environments are a mixture of predictable and unpredictable features

Exploration & Graph Construction

SLAM

88

- Simultaneous Localization and Mapping
 - A map is needed for localizing a robot
 - A pose estimate is needed to build a map
- Hard to decouple these problems!
 It can be done, with certain assumptions.
- Several approaches exist
 - Extended Kalman filter (EKF): similar to Kalman filter; but state vector (being estimated) includes position of map features
 - Graph-based SLAM
 - Particle filter-based SLAM

Applications 30 • SLAM is central to a range of indoor, outdoor, in-air and underwater applications for both manned and autonomous vehicles. **Examples:** • At home: vacuum cleaner, lawn mower • Air: surveillance with unmanned air vehicles • Underwater: reef monitoring • Underground: exploration of mines • Space: terrain mapping for localization

Cyrill Stachniss @ Freiburg

