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Probabilistic Localization 2�
Mapping

Some slides adapted from Cyrill Stachniss, with many thanks 
Check out his (instructional) YouTube videos! 
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u  Localization: estimating the robot’sa location in an 
environment

u  Mapping: creating a map of the environment

u  SLAM: simultaneously building a map and locating the 
robot in it

u  So far we’ve focused on localization

Today’s Class: Navigation 
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u  Probabilistic Localization
u  Core ideas
u  The basics of Markov localization, Kalman filters (a little)

u  Mapping

u  SLAM

u  Upcoming office hours
u  Today, 12-1
u  Tomorrow, 10-11
u  Unfortunately, I have to run after this

Today’s Class 
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u  State estimate �
(belief in current�
position) represented as a probability distribution

u  Ex: robot moving in a straight line 

u  Over time, position becomes less certain 
u  Distribution gets “wider”

u  When the environment (distance from wall) is �
observed, �
belief state gets�
less uncertain

Probabilistic Localization: Idea 
t
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u  Probabilistic localization:
1.  Predict state (location) from internal sensors
2.  Observe environment with external sensors
3.  Fuse prediction and observation
4.  Estimate current state

u  Approaches:

1.  Markov Localization 

2.  Kalman Filter Localization
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u  Position tracking: 
u  Known start state
u  Relatively high precision (low error)
u  Usually normal distribution

u  Global localization:
u  Start state can be anywhere/unknown
u  Usually initially uniform

u  “Kidnapped robot” problem:
u  Robot “gets moved” to another location (includes losing 

track of position)
u  Key question: does it know this happened?

Kinds of Localization Problem 
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Markov	Localization	 Kalman	Filter	Localization	

Markov vs. Kalman Filter Localization 

u  Localization starting from 
any unknown position 
⇒ Recovers from ambiguous 

situations

u  Update probability of all 
positions in whole state 
space at each time 

u  Uses discretized map 
representation
u  Cell size matters!
u  Much determined by 

computational feasibility

u  Tracks robot as it navigates
u  Inherently precise, efficient
u  Can work in continuous 

maps 
u  Can’t recover from 

ambiguous situations
u  If uncertainty becomes too 

large, Kalman filter will fail and 
the position is definitively lost

u  For example, colliding with 
something
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u  Markov localization: explicit, discrete representation 
for probability of each position in the state space

u  Usually represents environment as:
u  Grid or topological graph
⇒ …with finite number of possible states (positions)

u  During each update, the probability for each state 
(element) of the entire space is updated
u  This can get expensive!

Markov Localization: Idea 
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u  Prior probability: probability distribution describing 
likelihood of random variable x having some value 
before observations
u  p(x) before observation y
u  p(l) = probability of robot being in a particular place l

u  Posterior probability: belief that x is some value after 
observing y
u  p(l | i) = probability of robot being in l, given observation i

u  Divided by some normalization constant p(y)
u  Which is constant, so we assign it a label and forget about it

Markov Localization: Probability 
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u  P(A): Probability that A is true

P(rt = l):  probability that robot r is at position l �
     at time t

u  Estimate probability robot is at each position given
u  Actions and 
u  Sensor readings

u  P(A | B): Conditional probability of A, given B

P(rt = l | it): probability robot is at position l given �
                 sensor input it

Markov Localization (2) 
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u  Law of �
total probability: 

u  Bayes rule:

Markov Localization (3) 

p(x) p(x | y)p(y)
y
∑

p(x) p(x | y)p(y)dy
y
∫

discrete

continuous
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u  Bayes rule:

u  Map from belief state + sensor input to new belief state:

u  p(l): belief state before perceptual update process

u  p(i | l):  probability of getting measurement i at pos. l
u  Consult map, identify probability of sensor i reading for every 

possible position

u  p(i): normalization factor (so sum over all l in L = 1) 

Markov Localization (4) 
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u  Map from belief state + sensor input to new belief state:

u  Summing over all possible ways in which the robot may 
have reached l.

u  Markov assumption: Update depends only on previous 
state and most recent actions and percepts.
u  Not usually a true assumption, but usually close enough

Markov Localization (5) 
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Beliefs/Time 
u  Improving belief state�

by moving
u  Given knowledge of 

the environment

u  Each external 
measurement i 
updates probability 
distribution

u  Example:    à
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Markov Localization in Grid 
1.  Start: No knowledge, so use 

uniform probability distribution

2.  Robot perceives a pillar : Equal 
probability of being at 1, 2 or 3

3.  Robot moves: Action model 
gives estimate of new 
probability distribution based 
on previous estimate + motion.

4.  Robot perceives second pillar : 
Probability of being at pillar 2 
becomes dominant
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u  Considering all possible locations at each timestep, so:

u  Doesn’t need known start point

u  Resistant to “kidnapping” / errors fixable
u  Example: 
u  If you’re here, but estimate you’re here…
u  …sensor evidence accumulates until…
u  …this is the new best estimate

u  Handles position tracking, global �
localization, and kidnapping

Markov Localization: Pros 
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u  Considering all possible locations at each timestep, so:

u  Computationally expensive
u  Practical result: discretized maps only

u  Always evaluating some probability�
of being in every wrong place

u  Minimizes use of observation history

u  Can “jump” to the wrong place, too

Markov Localization: Cons 

less precise
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u  Markov localization can represent any probability 
function over robot’s location
u  This is general and powerful
u  This is imprecise

u  Do we really need a completely arbitrary probability 
function for position?
u  Can we use our sensors better?
u  Can we use our prior knowledge better?

u  Kalman filters use all information to estimate position

Kalman Filter Localization 
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u  Inputs to system:
u  Control signal
u  System error model (uncertainty in dynamics)

u  That is, motion error

u  All sensors produce measurements
u  With some sensor error

u  Kalman filter fuses sensor measurements with 
system knowledge

Kalman Filters 
37 

Kalman Filter Localization 
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u  Mobile robot moving in known environment
1.  Starts from known location
2.  Keeps track (maintains a belief) using odometry
3.  Over time, uncertainty about position grows
è  Observe environment for new estimate
4.  Fuse estimate with odometric estimation �

to give…
5.  Best possible belief update

Prediction	
(or	action)	
update	

Perception	(or	
measurement,	
or	correction)	
update	

Reminder… 
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u  Kalman filters are a special case of Markov localization

u  Instead of arbitrary probability function describing state, 
use a Gaussian function

u  Very efficient to update (only mean and variance change)

u  But initial belief must also be a Gaussian

u  Start state must be known
u  With some precision

u  Can’t recover if it gets lost 

Kalman Filter Localization: Idea 

position tracking only 
(no global localization, 
no kidnapping) 
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Beliefs/Time 
1.  Start: Fairly precise �

Gaussian for x

2.  Robot moves: Action �
model gives estimate �
of new probability �
distribution
1.  Variance increases
2.  Gaussian becomes “wider”

3.  Robot perceives a pillar : �
New probability�
distribution based �
on previous estimate + motion (action model)
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u  Treat localization as a sensor fusion problem

u  Robot’s sensory input (observations) treated as a set �
of features that relate to objects in the environment

u  Kalman filter fuses distance estimate from each �
feature to an object in the map

u  Let’s look at how that works for the localization cycle

act à estimate à observe à update estimate à act à…

* We will not break down the theory behind Kalman 
filters in class; SNS pg. 325–342 do so, with examples.

The Core Idea* 
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1.  Position estimation: estimate position from odometry

2.  Measurement prediction: predict what features the 
robot expects to see at estimated position

u  Given where I (think I) am, what should I see?

3.  Observation step: Collect percepts & extract features
u  Lines/doors/sensor values/… } map representation elements

4.  Matching: Find best match between observed and 
expected features (for each feature)

5.  Estimation step: fuse  matches to get updated belief

KF Localization Cycle 
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Map-Based Localization 

1. Prediction based on previous estimate and odometry

2. Observation with on-board sensors

3. Measurement prediction based on prediction and map

4. Matching of observation and map

5. Estimation * position update (posteriori position)
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u  Position estimate as probability distribution

u  Gaussian distribution
u  Only considering estimates “around” a single belief

u  Single hypothesis belief state
u  Update step = update mean and variance of initial Gaussian
u  Need approximate starting position

u  Precise, efficient, works in continuous environments

u  Use sensor fusion to combine estimated observations 
with actual observations

Kalman Filter Localization 
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u  Other kinds of probabilistic localization exist
u  Best source: Probabilistic robotics. MIT press, 2005. 

Sebastian Thrun,  Wolfram Burgard, and Dieter Fox.

u  Most other approaches instrument the environment
u  Markers or beacons

u  Feasible in, e.g., some factories, the CSEE building

u  Infeasible if the robot moves around a lot 

A Few More Ideas   
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Artificial Landmarks 
u  Goal: globally unique navigation

u  Any possible sensor reading uniquely identifies position

u  Feasible with certain simple environments
u  Markers can give a�

lot of information
u  ArUco markers are�

unique, give orientation

u  Less workable in “real”�
environments

ArUco markers on surface 
github.com/ziox/leonardo/wiki/Relazione-(originale) 

docs.opencv.org/3.4.0/d5/dae/tutorial_aruco_detection.html 
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Using ArUco Markers 

www.youtube.com/watch?v=VsIMl8O_F1w 
www.youtube.com/watch?v=Q1HlJEjW_j0 
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Beacon Systems: Triangulation 
69 

Active Beacons: Triangulation 
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u  Annotate 
exact route

u  Not very 
consistent 
with 
autonomy

u  Works for, 
e.g., factories

Route-Based Localization 

www.youtube.com/watch?v=Cf-V-giXiRw 
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u  By hand?
u  Slow, expensive and imprecise

u  Automatically: Mapping
u  The robot learns its environment

u  Can cope with dynamically �
changing environment

u  Map is built from sensors that will be used to navigate

How to Get a Map? 

123.5
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u  Basic requirements:

u  A way to incorporate sensed information into world 
model

u  Sufficient information for navigation tasks
u  Estimating position, path planning, obstacle avoidance, …

u  Correctness

u  Predictability
u  Most environments are a mixture of predictable and 

unpredictable features

Mapping Mapping 
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u  Map Maintenance: keeping track of changes in the 
environment

u  Often uses a measure of belief of each feature

u  If localizing: did the world change, or are you lost?

Challenges: Maintenance 

?
example:  

disappearing 
cupboard 
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Challenges: Cyclic Environments 
u  Small local error accumulates

u  This is usually irrelevant for navigation

u  However, when closing loops, global error does matter

Courtesy of Sebastian Thrun 
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Dynamic Environments 
u  Dynamic changes require 

continuous (re-)mapping

u  High-level features help if you 
can get them
u  Humans are more dynamic map 

features than walls
u  Can also learn that certain things 

are dynamic over time ?

navigate around 
cupboard… 
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Exploration & Graph Construction 
1. Exploration 
 
 
 
 
 
 
 
 
 
- provides correct topology 
- must recognize already visited 

location 
- backtracking for unexplored openings 

2. Graph Construction 
 
 
 
 
 
 
 
Where to put the nodes? 
 
•  Topology-based: at  

distinctive locations 

•  Metric-based: where features 
disappear or become visible 

explore
on stack
already
examined
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u  Simultaneous Localization and Mapping
u  A map is needed for localizing a robot
u  A pose estimate is needed to build a map

u  Hard to decouple these problems!
u  It can be done, with certain assumptions.

u  Several approaches exist
u  Extended Kalman filter (EKF): similar to Kalman filter, but state 

vector (being estimated) includes position of map features
u  Graph-based SLAM
u  Particle filter-based SLAM

SLAM 
90 

Applications 

Cyrill Stachniss @ Freiburg 
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Applications Everywhere… 

Cyrill Stachniss @ Freiburg 
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u  Full SLAM estimates the entire path

u  Online SLAM only wants to find the robot’s most 
recent location (pose)

Full vs. Online SLAM 

Cyrill Stachniss @ Freiburg 
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SLAM Definitions 

Cyrill Stachniss @ Freiburg 

103 

u  Mapping: modeling the environment

u  Localization: estimating the robot’s pose

u  SLAM: simultaneously doing the above

u  Full SLAM vs online SLAM

u  Everything is probabilistic!

Summary 


