

Belief Representation

- So what "belief" are we talking about?
- Where the robot believes it is during localization.
 Lots of ways to think about "where something is"
- "Belief" = Hypothesis (or hypotheses) about location
 With uncertainty, variance, probability
- AI 101: any stored information about the world must be represented in some machine-usable way

Characterizing Belief Representations

- Discrete vs. continuous
 - Is the robot's location fixed to a grid, or can it be anywhere?
- Single vs. multiple hypotheses
 - At any given time, how many possible locations is the robot hypothesizing it might be in?
- Probabilistic vs. bounded vs. point

A Note on Topological Maps

- Often shown as semi-geometric
- Doesn't have to be!
- Areas (nodes) and adjacencies (edges) are what matter

Choosing Map Representations

- Map precision vs. application
 - Precision should match goals
 - How precise does it need to be?
- Feature precision vs. map precision
 - Precision of map should match precision of sensors
 - 20cm. map precision \neq 20cm. obstacle avoidance
- Precision vs. computational complexity
 More capability = more computational complexity
- Closed-world assumption: if it exists, it's on the map
 When is this okay? When is it not?

How To Build Maps

- All of these map representations are simplifications of reality
 - Easier to store

32

- More intuitive (sometimes)
- Faster to use computationally
- Simplified maps still derived from sensor data

UMBC

 How do we get from rich sensor data to representations?

- Subdivide a map into blocks of free space
 - Find vertices of objects in area
 - Break up map so all vertices bound cells
- Idea:
- It matters how a robot can traverse free cells
- Exact position doesn't matter

