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Many slides adapted (with thanks!) from: 
Siegwart, Nourbakhsh and Scaramuzza, Autonomous Mobile Robots 

Renata Melamud, An Introduction to Robot Kinematics, CMU 
Rick Parent, Computer Animation, Ohio State 

Steve Rotenberg, Computer Animation, UCSD 
Angela Sodemann, www.youtube.com/watch?v=lVjFhNv2N8o, ASU 

2 

u  Project status
u  Have you looked carefully at the turnins?

u  Milestone 4

u  Homework 3

u  Scheduling

u  A note about DH kinematics:
u  The last few slides from last time covered an example in 

some detail; please do make sure it makes sense.

Bookkeeping  
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Inverse Kinematics 
u  So far we’ve mostly been working forward.

u  Goal: Compute vector of joint DoFs that puts end 
effector in some desired goal state
u  Inverse of previous problem

u  Instead of function from world space to robot space.

( )eΦ 1−= f( )Φe f= ⟷ 

(Reminder:	Φ	=	parameters,	e	=	end	effector	con5iguration)	
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Inverse Kinematics 
u  IK is challenging!

u  f() is (usually) relatively easy to evaluate
u  f -1() usually isn’t
u  Perfect solution means solving a nonlinear system of 

equations.

u  Sometimes not actually possible!

u  Many different approaches to solving IK problems
u  Which is usually a sign there’s no great solution…
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Inverse Kinematics 
u  Underconstrained

u  Fewer constraints than DoFs
u  Many solutions

u  Overconstrained 
u  Too many constraints
u  No solution

u  Unreachable workspace
u  Volume the end effector can reach ≠ goal

u  Dextrous workspace 
u  Volume end effector can reach in any orientation ≠ goal
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Analytical vs. Numerical 
u  One major way to classify IK-solving approaches:�

analytical vs numerical methods

u  Analytical
u  Find an exact solution by directly inverting the forward 

kinematics equations. 
u  Works only for relatively simple chains.

u  Numerical
u  Use approximation and iteration to converge on a solution. 
u  More expensive, more general purpose.

u  We will look at one technique: Jacobians
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Analytical vs. Numerical 2 

u  Compute the vector of joint DOFs that will cause the 
end effector to reach some desired goal state

u  Analytic approach
u  Directly calculate joint angles in configuration that satisfies goal

u  Numeric approach
u  At each time slice, determine joint movements that take you in 

direction of  goal position (and orientation)

1.  Set goal configuration of end effector
2.  Calculate interior joint angles
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Inverse Kinematics 
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u  Given arm configuration (L1, L2, …)

u  Given desired goal position (and orientation) of end 
effector: [x,y,z, ψ1,ψ2, ψ3]

u  Analytically compute goal configuration (θ1,θ2, …)

u  Interpolate pose vector from initial to goal

Analytic IK Solving 
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Analytic Inverse Kinematics 
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(X,Y) 
Goal 

Multiple solutions 

Analytic Inverse Kinematics 
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(X,Y) L1 
L2 

θ1 
θT 

180- θ2 

Analytic Inverse Kinematics 
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Analytic Inverse Kinematics 
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Analytic Inverse Kinematics 
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Analytic Inverse Kinematics 
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Iterative Inverse Kinematics 
u  When linkage is too complex for analytic methods:

u  At each time step, take end effector towards goal 
position and orientation (somehow)
u  A form of greedy search
u  Does greedy search always find a solution?

u  Need to recompute at each time step

u  Big question: what is “somehow”?

u  These are approximate methods.
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u  For each timestep:
1.  Choose some movement in some DOF

u  By heuristic
u  By immediate velocity
u  Other…

2.  Perform forward kinematics – where’s robot?
u  Don’t have to move to do this!

3.  Consider undoing that move
4.  Loop

More Specifically… 
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u Φi is the initial pose vector for all joints
u  This is all we start off knowing!

1.  Find the final joint configurations: Φf

2.  Compute the change in rotations: ΔΦ

3.  Compute the Jacobian: J

Jacobian IK 

https://medium.com/unity3danimation/overview-of-jacobian-ik-a33939639ab2 

Φi  <45, 15, -60>  
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u  We iteratively change ΔΦ by small amounts
u  Size of Δ is controlled by a parameter

u  V = J * ΔΦ 
u  V = difference between end effector and target 
u  (For now, J is magic)

u ΔΦ = JT * V

u  But now need to computer to Jacobian matrix, J

Finding Joint Moves from J 

https://medium.com/unity3danimation/overview-of-jacobian-ik-a33939639ab2 
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u  Each term in the Jacobian 
shows how a change in 
one joint angle changes 
the end effector. 
u  Example: the first term gives 

end effector change along 
the X-axis, if Joint A’s angle 
is changed by Δ. 

The Jacobian Matrix 

https://medium.com/unity3danimation/overview-of-jacobian-ik-a33939639ab2 
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u  Analytical solution
u  3-DOF example

Finding J 
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End Effector 

θ2 

a2 d2 

a2 x d2 

Compute instantaneous effect of each joint

Linear approximation to curvilinear motion

Find linear combination to take end effector 
towards goal position

Inverse Jacobian Method 
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Instantaneous linear 
change in end effector for 

ith joint 

Inverse Jacobian Method 
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What is the change in 

orientation of end effector 
induced by joint i that has 

axis of rotation ai 
and position Ji? iia ω=!

Angular velocity 

Inverse Jacobian Method 
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Solution only valid for an   
instantaneous step 

Angular affect is really  
curved, not straight line 

Once a step is taken, need 
to recompute solution 

Inverse Jacobian Method 
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€ 

y1 = f1(x1,x2,x3,x4,x5,x6)
y2 = f2(x1,x2,x3,x4,x5,x6)
y3 = f3(x1,x2,x3,x4,x5,x6)
y4 = f4 (x1,x2,x3,x4,x5,x6)
y5 = f5(x1,x2,x3,x4,x5,x6)
y6 = f6(x1,x2,x3,x4,x5,x6)

Set up equations 
yi: state variable 
xi : system parameter 
fi : relate system parameters to state variable 

Inverse Jacobian: Math 
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€ 

y1 = f1(x1,x2,x3,x4,x5,x6)
y2 = f2(x1,x2,x3,x4,x5,x6)
y3 = f3(x1,x2,x3,x4,x5,x6)
y4 = f4 (x1,x2,x3,x4,x5,x6)
y5 = f5(x1,x2,x3,x4,x5,x6)
y6 = f6(x1,x2,x3,x4,x5,x6)

Matrix Form 

€ 

Y = F(X)

Inverse Jacobian: Math 
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Use chain rule to differentiate equations to relate 
changes in system parameters to changes in state 

variables  
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Inverse Jacobian: Math 
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Matrix Form 

Inverse Jacobian: Math 
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dX
X
FdY
∂
∂

=

Change in position (and 
orientation) of end effector Change in joint angles 

Linear approximation that relates change 
in joint angle to change in end effector 
position (and orientation)  

Inverse Jacobian: Math 
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Inverse Jacobian: Math 
u  We’ve now derived the 

form we saw initially.
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Jacobians 
u  Let’s say we have a simple 2D robot arm with two 1-

DOF rotational joints:

Φ1 

Φ2 

• e=[ex ey] 
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Jacobians 
u  The Jacobian matrix J(e,Φ) shows how each 

component of e varies wrt. each joint angle
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Jacobians 
u  Consider what would happen if we increased φ1 by 

a small amount. What would happen to e ?
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Jacobians 
u  What if we increased φ2  by a small amount?
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Jacobian for a 2D Robot Arm 
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Jacobian transpose

Alternate Jacobian – use goal position

HAL – human arm linkage

CCD

Damped Least Squares

Other Numeric IK 


