
4/17/18

1

Inverse Kinematics

x1

y1

P

θ

x1

y1

P

θ

Many slides adapted (with thanks!) from:
Siegwart, Nourbakhsh and Scaramuzza, Autonomous Mobile Robots

Renata Melamud, An Introduction to Robot Kinematics, CMU
Rick Parent, Computer Animation, Ohio State

Steve Rotenberg, Computer Animation, UCSD
Angela Sodemann, www.youtube.com/watch?v=lVjFhNv2N8o, ASU

2

u  Project status
u  Have you looked carefully at the turnins?

u  Milestone 4

u  Homework 3

u  Scheduling

u  A note about DH kinematics:
u  The last few slides from last time covered an example in

some detail; please do make sure it makes sense.

Bookkeeping

3

Inverse Kinematics
u  So far we’ve mostly been working forward.

u  Goal: Compute vector of joint DoFs that puts end
effector in some desired goal state
u  Inverse of previous problem

u  Instead of function from world space to robot space.

()eΦ 1−= f()Φe f= ⟷

(Reminder:	Φ	=	parameters,	e	=	end	effector	con5iguration)	

4

Inverse Kinematics
u  IK is challenging!

u  f() is (usually) relatively easy to evaluate
u  f -1() usually isn’t
u  Perfect solution means solving a nonlinear system of

equations.

u  Sometimes not actually possible!

u  Many different approaches to solving IK problems
u  Which is usually a sign there’s no great solution…

5

Inverse Kinematics
u  Underconstrained

u  Fewer constraints than DoFs
u  Many solutions

u  Overconstrained
u  Too many constraints
u  No solution

u  Unreachable workspace
u  Volume the end effector can reach ≠ goal

u  Dextrous workspace
u  Volume end effector can reach in any orientation ≠ goal

6

Analytical vs. Numerical
u  One major way to classify IK-solving approaches:�

analytical vs numerical methods

u  Analytical
u  Find an exact solution by directly inverting the forward

kinematics equations.
u  Works only for relatively simple chains.

u  Numerical
u  Use approximation and iteration to converge on a solution.
u  More expensive, more general purpose.

u  We will look at one technique: Jacobians

4/17/18

2

7

Analytical vs. Numerical 2

u  Compute the vector of joint DOFs that will cause the
end effector to reach some desired goal state

u  Analytic approach
u  Directly calculate joint angles in configuration that satisfies goal

u  Numeric approach
u  At each time slice, determine joint movements that take you in

direction of goal position (and orientation)

1.  Set goal configuration of end effector
2.  Calculate interior joint angles

8

Goal

End Effector

θ1

θ2
θ3 L1

L2 L3

Inverse Kinematics

9

u  Given arm configuration (L1, L2, …)

u  Given desired goal position (and orientation) of end
effector: [x,y,z, ψ1,ψ2, ψ3]

u  Analytically compute goal configuration (θ1,θ2, …)

u  Interpolate pose vector from initial to goal

Analytic IK Solving
10

Analytic Inverse Kinematics

(X,Y)
L1

L2

θ1

θ2

Goal

11

(X,Y)
Goal

Multiple solutions

Analytic Inverse Kinematics
12

(X,Y) L1
L2

θ1
θT

180- θ2

Analytic Inverse Kinematics

4/17/18

3

13

(X,Y) L1
L2

θ1
θT

180- θ2

X

Y

€

x 2 + y 2

Analytic Inverse Kinematics
14

A

B

C

α

AB
CBA

2
)cos(

222 −+
=α

Law of Cosines

15

(X,Y) L1
L2

θ1 θT

180- θ2

X
Y

€

x 2 + y 2

22
)cos(

YX
X

T
+

=θ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
= −

22

1cos
YX

X
Tθ

22
1

2
2

222
1

1
2

)cos(
YXL
LYXL

T
+

−++
=−θθ

T
YXL
LYXL

θθ +
+

−++
= −)

2
(cos

22
1

2
2

222
11

1

()
21

222
2

2
1

2 2
)180cos(

LL
YXLL +−+

=−θ

())
2

(cos180
21

222
2

2
11

2 LL
YXLL +−+

−= −θ

Analytic Inverse Kinematics
16

Analytic Inverse Kinematics

17

Iterative Inverse Kinematics
u  When linkage is too complex for analytic methods:

u  At each time step, take end effector towards goal
position and orientation (somehow)
u  A form of greedy search
u  Does greedy search always find a solution?

u  Need to recompute at each time step

u  Big question: what is “somehow”?

u  These are approximate methods.

18

u  For each timestep:
1.  Choose some movement in some DOF

u  By heuristic
u  By immediate velocity
u  Other…

2.  Perform forward kinematics – where’s robot?
u  Don’t have to move to do this!

3.  Consider undoing that move
4.  Loop

More Specifically…

4/17/18

4

19

u Φi is the initial pose vector for all joints
u  This is all we start off knowing!

1.  Find the final joint configurations: Φf

2.  Compute the change in rotations: ΔΦ

3.  Compute the Jacobian: J

Jacobian IK

https://medium.com/unity3danimation/overview-of-jacobian-ik-a33939639ab2

Φi <45, 15, -60>

20

u  We iteratively change ΔΦ by small amounts
u  Size of Δ is controlled by a parameter

u  V = J * ΔΦ
u  V = difference between end effector and target
u  (For now, J is magic)

u ΔΦ = JT * V

u  But now need to computer to Jacobian matrix, J

Finding Joint Moves from J

https://medium.com/unity3danimation/overview-of-jacobian-ik-a33939639ab2

21

u  Each term in the Jacobian
shows how a change in
one joint angle changes
the end effector.
u  Example: the first term gives

end effector change along
the X-axis, if Joint A’s angle
is changed by Δ.

The Jacobian Matrix

https://medium.com/unity3danimation/overview-of-jacobian-ik-a33939639ab2

22

u  Analytical solution
u  3-DOF example

Finding J

23

End Effector

θ2

a2 d2

a2 x d2

Compute instantaneous effect of each joint

Linear approximation to curvilinear motion

Find linear combination to take end effector
towards goal position

Inverse Jacobian Method
24

Instantaneous linear
change in end effector for

ith joint

Inverse Jacobian Method

4/17/18

5

25
What is the change in

orientation of end effector
induced by joint i that has

axis of rotation ai
and position Ji? iia ω=!

Angular velocity

Inverse Jacobian Method
26

Solution only valid for an
instantaneous step

Angular affect is really
curved, not straight line

Once a step is taken, need
to recompute solution

Inverse Jacobian Method

27

€

y1 = f1(x1,x2,x3,x4,x5,x6)
y2 = f2(x1,x2,x3,x4,x5,x6)
y3 = f3(x1,x2,x3,x4,x5,x6)
y4 = f4 (x1,x2,x3,x4,x5,x6)
y5 = f5(x1,x2,x3,x4,x5,x6)
y6 = f6(x1,x2,x3,x4,x5,x6)

Set up equations
yi: state variable
xi : system parameter
fi : relate system parameters to state variable

Inverse Jacobian: Math
28

€

y1 = f1(x1,x2,x3,x4,x5,x6)
y2 = f2(x1,x2,x3,x4,x5,x6)
y3 = f3(x1,x2,x3,x4,x5,x6)
y4 = f4 (x1,x2,x3,x4,x5,x6)
y5 = f5(x1,x2,x3,x4,x5,x6)
y6 = f6(x1,x2,x3,x4,x5,x6)

Matrix Form

€

Y = F(X)

Inverse Jacobian: Math

29

Use chain rule to differentiate equations to relate
changes in system parameters to changes in state

variables

),,,,,(6543211 xxxxxxfyi =

6
6

5
5

4
4

3
3

2
2

1
1

dx
x
fdx

x
fdx

x
fdx

x
fdx

x
fdx

x
fdy iiiiii

i ∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

+++++=

Inverse Jacobian: Math
30

€

Y = F(X) dX
X
FdY
∂
∂

=

6
6

5
5

4
4

3
3

2
2

1
1

dx
x
fdx

x
fdx

x
fdx

x
fdx

x
fdx

x
fy iiiiii

i ∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂ +++++=

Matrix Form

Inverse Jacobian: Math

4/17/18

6

31

dX
X
FdY
∂
∂

=

Change in position (and
orientation) of end effector Change in joint angles

Linear approximation that relates change
in joint angle to change in end effector
position (and orientation)

Inverse Jacobian: Math
32

dX
X
FdY
∂
∂

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

n

z

y

x

z

n

yyy

n

xxx

z

y

x

z

y

x

a

a

a

p

ppp

ppp

v
v
v

θ

θ

θ

∂θ
∂
∂θ

∂
∂θ
∂
∂θ
∂

∂θ

∂

∂θ

∂

∂θ

∂
∂θ
∂

∂θ
∂

∂θ
∂

ω

ω

ω
!
…

!
!

………

………

………

………

…

…

2

1

1

1

1

1

21

21

Inverse Jacobian: Math
u  We’ve now derived the

form we saw initially.

33

Jacobians
u  Let’s say we have a simple 2D robot arm with two 1-

DOF rotational joints:

Φ1

Φ2

• e=[ex ey]

34

Jacobians
u  The Jacobian matrix J(e,Φ) shows how each

component of e varies wrt. each joint angle

()

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂

∂

∂

∂
∂

∂

∂

∂

=

21

21,

φφ

φφ
yy

xx

ee

ee

J Φe

35

Jacobians
u  Consider what would happen if we increased φ1 by

a small amount. What would happen to e ?

φ1

• ∂e
∂ϕ1

=
∂ex
∂ϕ1

∂ey
∂ϕ1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

36

Jacobians
u  What if we increased φ2 by a small amount?

φ2

•
⎥
⎦

⎤
⎢
⎣

⎡

∂

∂

∂

∂
=

∂

∂

222 φφφ
yx eee

4/17/18

7

37

Jacobian for a 2D Robot Arm

φ2

•

φ1

()

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂

∂

∂

∂
∂

∂

∂

∂

=

21

21,

φφ

φφ
yy

xx

ee

ee

J Φe

38

Jacobian transpose

Alternate Jacobian – use goal position

HAL – human arm linkage

CCD

Damped Least Squares

Other Numeric IK

