

Inverse Kinematics

- So far we've mostly been working forward.
- Goal: Compute vector of joint DoFs that puts end effector in some desired goal state
 Inverse of previous problem
- Instead of function from world space to robot space.

$$\mathbf{e} = f(\mathbf{\Phi}) \leftrightarrow \mathbf{\Phi} = f^{-1}(\mathbf{e})$$

(Reminder: Φ = parameters, e = end effector configuration)

Inverse Kinematics

Underconstrained

- Fewer constraints than DoFs
- Many solutions

Overconstrained

- Too many constraints
- No solution
- Unreachable workspace
 - ◆ Volume the end effector can reach ≠ goal
- Dextrous workspace
 - ♦ Volume end effector can reach in any orientation ≠ goal

Analytical vs. Numerical

- One major way to classify IK-solving approaches: analytical vs numerical methods
- Analytical
 - Find an exact solution by directly inverting the forward kinematics equations.
 - Works only for relatively simple chains.
- Numerical
 - Use approximation and iteration to converge on a solution.
 - More expensive, more general purpose.
- We will look at one technique: Jacobians

Analytical vs. Numerical 2 1. Set goal configuration of end effector 2. Calculate interior joint angles • Compute the vector of joint DOFs that will cause the end effector to reach some desired goal state

- Analytic approach
 - Directly calculate joint angles in configuration that satisfies goal
- Numeric approach
 - At each time slice, determine joint movements that take you in direction of goal position (and orientation)

Analytic IK Solving Given arm configuration (L1, L2, ...) Given desired goal position (and orientation) of end effector: [x,y,z, ψ1,ψ2, ψ3]

- \bullet Analytically compute goal configuration (01,02, ...)
- Interpolate pose vector from initial to goal

The Jacobian Matrix			
 Each term in the Jacobian shows how a change in one joint angle changes the end effector. Example: the first term gives end effector change along the X-axis, if Joint A's angle is changed by Δ. 	$\begin{bmatrix} \frac{\partial p_x}{\partial \theta_A} \\ \frac{\partial p_y}{\partial \theta_A} \\ \frac{\partial p_z}{\partial \theta_A} \end{bmatrix}$	$\frac{\partial p_x}{\partial \theta_B} \\ \frac{\partial p_y}{\partial \theta_B} \\ \frac{\partial p_z}{\partial \theta_B}$	$\frac{\partial p_x}{\partial \theta_c} \\ \frac{\partial p_y}{\partial \theta_c} \\ \frac{\partial p_z}{\partial \theta_c} \\ \frac{\partial p_z}{\partial \theta_c} \end{bmatrix}$
https://medium.com/unity3danimation/overview-of-jacobian-ik-a33939639ab2			

