

Denavit-Hartenberg Methodw

- Efficient method for finding transformation matrices

Set frames for all joints

- This is actually the tricky part.

2. Calculate all DH parameters from frames

- 4 DH parameters fully define position and orientation (not 6)

3. Populate DH parameter table
4. Populate joint-to-joint DH transformation matrices

- Matrix for 0-1, matrix for 1-2, etc.

5. Multiply all matrices together, in order

- 0-1 $\times 1-2 \times 2-3 \times \ldots$

Defining Frames for Joints

- What's the frame of reference for a joint?
- Actually, completely flexible
- We usually choose:
- 1 axis through the center of rotation/direction of displacement
- 2 more perpendicular to that

- We can move the origin
- P is no longer $<0,0,0>$
- To use DH method, choose frames carefully

Choosing Frames for DH

- z axis must be axis of motion
- Rotation around z for revolute
- Translation along z for prismatic

- x_{i} axis orthogonal to z_{i} and z_{i-1}
- There's always a line that satisfies this
- y axis must follow the right-hand rule
- Fingers point $+x$
- Thumb points $+z$
- Palm faces $+y$

- x_{i} axis must intersect z_{i-1} axis (may mean translating origin)

Denavit-Hartenberg Methodrv

- A way of finding transformation matrix (quickly)

।. Assign DH frames to DoFs (previous slide)

- This takes practice.

2. Create a parameter table

- Rows = (\# frames -1)
- Columns $=4$ (always) \leftarrow your DH parameters $\theta, \alpha, \mathrm{a}, \mathrm{d}$

	$\boldsymbol{\theta}$	$\boldsymbol{\alpha}$	\mathbf{a}	\mathbf{d}
frame 0-1	θ_{0-1}	α_{0-1}	a_{0-1}	$\mathrm{~d}_{0-1}$
frame 1-2	θ_{1-2}	α_{1-2}	a_{1-2}	$\mathrm{~d}_{1-2}$
frame 2-3	\ldots	\ldots	\ldots	\ldots

Denavit-Hartenberg Method減

- Given parameter table,

3. Fill out transformation matrix* for each transition:
$R_{i}^{i-1}=\left[\begin{array}{cccc}\cos \theta_{i} & -\sin \theta_{i} \cos \alpha_{i, i+1} & \sin \theta_{i} \sin \alpha_{i, i+1} & a_{i, i+1} \cos \theta_{i} \\ \sin \theta_{i} & \cos \theta_{i} \cos \alpha_{i, i+1} & -\cos \theta_{i} \sin \alpha_{i, i+1} & a_{i, i+1} \sin \theta_{i} \\ 0 & \sin \alpha_{i, i+1} & \cos \alpha_{i, i+1} & d_{i} \\ 0 & 0 & 0 & 1\end{array}\right]$
4. And multiply. Ex: $R_{2}^{0}=R_{1}^{0} R_{2}^{1}$

- R_{2}^{0} is the same matrix as would be found by other methods. DH is fast and efficient.

Example: Rotation in Plane

Transformation i to i-1

Transformation i to i-1

$\operatorname{Trans}_{Z_{i}}\left(d_{i}\right)=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{i} \\ 0 & 0 & 0 & 1\end{array}\right]$	$\operatorname{Rot}_{Z_{i}}\left(\theta_{i}\right)=\left[\begin{array}{ccc}\cos \theta_{i} & -\sin \theta_{i} & 0 \\ \sin \theta_{i} & \cos \theta_{i} & 0 \\ 0 \\ 0 & 0 & 1 \\ 0 \\ 0 & 0 & 0\end{array}\right]$
	$\operatorname{Rot}_{X_{i}}\left(\alpha_{i, i+1}\right)=$
$\operatorname{Trans}_{X_{i}}\left(a_{i, i+1}\right)=\left[\begin{array}{cccc}1 & 0 & 0 & a_{i, i+1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$	

Transformation in DH:

- Coordinate transformation:
${ }^{i-1} T_{i}=\left[Z_{i}\right]\left[X_{i}\right]=\operatorname{Trans}_{Z_{i}}\left(d_{i}\right) \operatorname{Rot}_{Z_{i}}\left(\theta_{i}\right) \operatorname{Trans}_{X_{i}}\left(a_{i, i+1}\right) \operatorname{Rot}_{X_{i}}\left(\alpha_{i, i+1}\right)$,

