

Manipulator Kinematics

- Kinematics (possible motion of a body) for manipulator robots
- End effector position and orientation, wrt. an arbitrary initial frame
- A manipulator is moved by changing its...
- Joints: revolute and prismatic

Forward Kinematics \& IK

Kinematics Problem

- The state space is the set of all possible states
- The state of the manipulator is:
- A set of variables which describe changes in configuration over time, in response to joint forces + external forces
-Where do joint forces come from?
- Controllers!
- So, given some set of joints, what signals do we send?
- In joint space vs. Cartesian space

Review: Z Rotation Matrix*

- We derived this geometrically in class:
- If we assume frame axes are of length 1
- $a=\cos \theta$
- $b=\sin \theta$
- $c=-\sin \theta$
- $d=\cos \theta$
- Rotations around
$z \rightarrow 0 \mathrm{~s}$ and 1 s

* AKA orthogonal rotation matrix

Review: Z Rotation Matrix* (

- In practice, it's really this:
- Rotations around $z \rightarrow 0$ s and 1 s

Complex Rotations

- What if we don't just rotate around a single axis?
- Any rotation in 3D space can be broken down into single-axis rotations
- Given orthogonal axes
- Multiply rotation matrices!

$$
\mathrm{R}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \gamma & 0 & \sin \gamma \\
0 & 1 & 0 \\
-\sin \gamma & 0 & \cos \gamma
\end{array}\right]
$$

- Can do any number of rotations; just multiply out

Other Rotation Matrices 14
 $\begin{aligned} & -\begin{array}{l}\text { Similarly derived from } \\ \text { axis of rotation and } \\ \text { trigonometric values }\end{array}\end{aligned} R_{X}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta\end{array}\right]$ of projections
 a few 2D rotations
 $$
\text { around } y
$$
 $$
R_{Y}=\left[\begin{array}{ccc} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{array}\right]
$$
 $$
R_{Z}=\left[\begin{array}{ccc} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{array}\right]
$$

Describing A Manipulator

 19- Arm made up of links in a chain
- Joints each have <x,y,z> and roll/pitch/yaw
- So, each joint has a coordinate system
- We label links, joints, and angles

Forward \& Inverse	
21	
Forward: - Inputs: joint angles - Outputs: coordinates of end-effector - Inverse: - Inputs: desired coordinates of end-effector - Outputs: joint angles - Inverse kinematics are tricky - Multiple solutions - No solutions - Dead spots	Joint space (robot space - previously R) Cartesian space (global space - previously I)

Forward: i \rightarrow i-1

- We are we looking for transformation matrix T , going from frame i to frame $\mathrm{i}-1$:

$$
\mathrm{T}_{\mathrm{i}}^{\mathrm{i}-1} \quad\left(\text { or }{ }_{i}^{\mathrm{i-1}} \mathrm{~T}\right) \quad\left(\text { or }{ }^{\mathrm{i}-1} \mathrm{~T}_{\mathrm{i}}\right)
$$

- Determine position and orientation of end-effector as function of displacements in joints
-Why?
- We can multiply out along all joints

Forward Kinematics

- We will sometimes use the vector $\boldsymbol{\Phi}$ to represent the array of M joint values:

$$
\mathbf{\Phi}=\left[\begin{array}{llll}
\phi_{1} & \phi_{2} & \ldots & \phi_{M}
\end{array}\right]
$$

- We will sometimes use the vector e to represent an array of N values that describe the end effector in world space:

$$
\mathbf{e}=\left[\begin{array}{llll}
e_{1} & e_{2} & \cdots & e_{N}
\end{array}\right]
$$

- Example: If we need end effector position and orientation, e would contain 6 DOFs: 3 translations and 3 rotations. If we only need end effector position, e would just contain the 3 translations.
$\left[\begin{array}{l}0 \\ 3 \\ 0 \\ 1\end{array}\right] \quad\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \quad\left[\begin{array}{llll}1 & 0 & 0 & x \\ 0 & 1 & 0 & y \\ 0 & 0 & 1 & z \\ 0 & 0 & 0 & 1\end{array}\right]$

Matrices for Pure Rotation

Around z : $[\cos \theta-\sin \theta 000]$ $\sin \theta \cos \theta 00$ $\begin{array}{llll}0 & 0 & 1 & 0\end{array}$ $\left.\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]$

Review?
Introduction to Homogeneous Transformations \& Robot Kinematics Jennifer Kay 2005

Describing A Manipulator

Arm made up of links in a chain

- How to describe each link?
- Many choices exist
- DH parameters widely used
- Although it's not true that quaternions are not widely used
- DH parameters
- Denavit-Hartenberg
$-\mathrm{a}_{\mathrm{i}-1}, \alpha_{\mathrm{i}-1}, \mathrm{~d}_{\mathrm{i}}, \theta_{2}$

Denavit-Hartenberg Methodiv

- Efficient method for finding transformation matrices

।. Set frames for all joints

- This is actually the tricky part.

2. Calculate all DH parameters from frames

- 4 DH parameters fully define position and orientation (not 6)

3. Populate DH parameter table
4. Populate joint-to-joint DH transformation matrices

- Matrix for 0-1, matrix for 1-2, etc.

5. Multiply all matrices together, in order

- $0-1 \times 1-2 \times 2-3 \times \ldots$

$\mathrm{a}_{\mathrm{i}-1}$: link length - distance $\mathrm{Z}_{\mathrm{i}-1}$ and Z_{i} along X_{i} α_{i-1} : link twist - angle $\mathrm{Z}_{\mathrm{i}-1}$ and Z_{i} around X_{i}
d_{i} : link offset - distance $\mathbf{X}_{\mathrm{i}-1}$ to \mathbf{X}_{i} along \mathbf{Z}_{i}
θ_{i} : joint angle - angle $\mathrm{X}_{\mathrm{i}-1}$ and X_{i} around Z_{i}

Denavit-Hartenberg Methodv

- A way of finding transformation matrix (quickly)

Assign DH frames to DoFs (previous slide)

- This takes practice.

2. Create a parameter table

- Rows = (\# frames - 1)
- Columns $=4$ (always) \leftarrow your DH parameters $\theta, \alpha, \mathrm{a}, \mathrm{d}$

	$\boldsymbol{\theta}$	$\boldsymbol{\alpha}$	\mathbf{a}	\mathbf{d}
frame 0-1	θ_{0-1}	α_{0-1}	a_{0-1}	$\mathrm{~d}_{0-1}$
frame 1-2	θ_{1-2}	α_{1-2}	a_{1-2}	$\mathrm{~d}_{1-2}$
frame 2-3	\ldots	\ldots	\ldots	\ldots

Denavit-Hartenberg Methodiv

- Given parameter table,

3. Fill out transformation matrix* for each transition:
$R_{i}^{i-1}=\left[\begin{array}{cccc}\cos \theta_{i} & -\sin \theta_{i} \cos \alpha_{i, i+1} & \sin \theta_{i} \sin \alpha_{i, i+1} & a_{i, i+1} \cos \theta_{i} \\ \sin \theta_{i} & \cos \theta_{i} \cos \alpha_{i, i+1} & -\cos \theta_{i} \sin \alpha_{i,+1} & a_{i, i+1} \sin \theta_{i} \\ 0 & \sin \alpha_{i, i+1} & \cos \alpha_{i, i+1} & d_{i} \\ 0 & 0 & 0 & 1\end{array}\right]$
4. And multiply. Ex: $R_{2}^{0}=R_{1}^{0} R_{2}^{1}$

- R_{2}^{0} is the same matrix as would be found by
* If you'd like other methods. DH is fast and efficient.

Transformation i to i-1

$\mathbf{a}_{\mathrm{i}-1}$: distance $\mathbf{Z}_{\mathrm{i}-1}$ and \mathbf{Z}_{i} along $\mathbf{X}_{\mathbf{i}}$ \} together: screw
$\boldsymbol{\alpha}_{i-1}$: angle $\mathbf{Z}_{\mathrm{i}-1}$ and $\mathbf{Z}_{\mathbf{i}}$ around $\left.\mathbf{X}_{\mathbf{i}}\right\}$ displacement
$\left[X_{i}\right]=\operatorname{Trans}_{X_{i}}\left(a_{i, i+1}\right) \operatorname{Rot}_{X_{i}}\left(\alpha_{i, i+1}\right)$
$\mathbf{d}_{\mathbf{i}}$: distance $\mathbf{X}_{\mathbf{i}-1}$ to $\mathbf{X}_{\mathbf{i}}$ along $\mathbf{Z}_{\mathbf{i}}$ \} together: screw
$\boldsymbol{\theta}_{\mathbf{2}}$: angle $\mathbf{X}_{\mathrm{i}-1}$ and $\mathbf{X}_{\mathbf{i}}$ around \mathbf{Z}_{i} \} displacement

$$
\left[Z_{i}\right]=\operatorname{Trans}_{z_{i}}\left(d_{i}\right) \operatorname{Rot}_{Z_{i}}\left(\theta_{i}\right)
$$

- Coordinate transformation:
${ }^{i-1} T_{i}=\left[Z_{i}\right]\left[X_{i}\right]=\operatorname{Trans}_{Z_{i}}\left(d_{i}\right) \operatorname{Rot}_{Z_{i}}\left(\theta_{i}\right) \operatorname{Trans}_{X_{i}}\left(a_{i, i+1}\right) \operatorname{Rot}_{X_{i}}\left(\alpha_{i, i+1}\right)$,

Example: Rotation in Plane

 $$
x=a_{1} \cos \theta_{1}+a_{2} \cos \left(\theta_{1}+\theta_{2}\right)
$$
 $$
y=a_{1} \sin \theta_{1}+a_{2} \sin \left(\theta_{1}+\theta_{2}\right)
$$
 $$
a_{i}=\text { the length of } i \text { th link }
$$

