

Class Today

- 2D transformations
- Rolling and

Project Next Steps

- By now you should have:
- Built robot
- Installed Raspbian
- Next important step: what will your architecture be?
- Code and version control?
- Message passing and comms infrastructure?
- Turnins
- Writeup of architecture
- Code to control servos and read sensors
- Video of a small demo

Kinematics
Mobile Kinematics

Mobile Kinematics: Concepts

- Forward Kinematics:
- Parameters \rightarrow Configuration
- Inverse Kinematics (IK):
- Configuration \rightarrow Parameters
- I want to be in this configuration. What motions should I make?
- Mobile configuration = position and orientation with respect to an arbitrary initial frame I
- Understanding mobile robot motion starts with understanding constraints on the robot's mobility.

Wheeled Motion Control

- Requirements for understanding/controlling motion:

Kinematic / dynamic model of the robot
2. Model of interaction between the wheel and the ground
3. Definition of required motion

- What speed and position controls are there? Are possible?

4. A control policy that satisfies the requirements

What We're Trying to Do

- Sequence of events:

।. Power on: position $=(0,0)$, orientation $=$ due north
2. Rotate 15° right
3. Move forward 2 meters
4. Observe obstacle
5. Rotate 30° left
6. Move forward I meter

Position - (?,?), orientation $=?^{\circ}$
-Where's the obstacle?

Projections

- A projection of a vector v onto an axis is the amount of change along that axis along the length of v.
- This is the change in position in that axis
- Here:
- $a=\Delta x_{I}$
- $b=\Delta y_{I}$
- This is the change in position in that axis

Specifying Transforms

- How does a robot (or system) map to the global frame of reference?
- Configuration $=$ position and orientation
- Position: x, y coordinates
$x_{I, t}$ and $y_{I, t}$
- $I=$ initial (global)
- $t=$ timestep

- Orientation: θ
- Angle between robot's coordinate system and initial coordinate system

Mapping Between Frames

- Representing robot within an arbitrary initial frame
- Initial frame: $\left\{X_{I}, Y_{I}\right\}$
- Robot frame: $\left\{X_{R}, Y_{R}\right\}$
- Robot: $\xi_{1}=\left[\begin{array}{lll}x & y & \theta\end{array}\right]^{\top}$
- Just the transpose
- Goal
- Map motions from global reference frame to local reference frame (and vice versa)

$$
\left\{X_{I}, Y_{I}\right\} \longrightarrow\left\{X_{R}, Y_{R}\right\}
$$

Mapping Between Frames

- How do you perform a rotation?
- A rotation matrix is used to perform a rotation in Euclidean space
- Any point $\langle x, y\rangle$ in space (aka $\left[\begin{array}{l}x \\ y\end{array}\right]$) can be multiplied by some matrix...
(spoiler: it's $\rightarrow R(\theta)=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \text { usually) } & \\ \sin \theta & \cos \theta\end{array}\right]$
- The result is the coordinates in the other frame, rotated by θ around z.
- This matrix rotates points in the xy plane counter-clockwise, through θ, around the origin.

The Z Rotation Matrix

The Z Rotation Matrix

- If we assume frame axes are of length $1 \ldots$

The Z Rotation Matrix

- If we assume frame axes are of length 1
- $a=\cos \theta$
$b=\sin \theta \quad y_{I}$
- $c=-\sin \theta$
- $d=\cos \theta$
- What about z ?
$R(\theta)=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$

* AKA orthogonal rotation matrix

Mapping Between Frames

- How do you perform a rotation, again?
- A rotation matrix is used to perform a rotation in Euclidean space.

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x_{R} \\
y_{R}
\end{array}\right]=\left[\begin{array}{l}
x_{I} \\
y_{I}
\end{array}\right]
$$

- Rotates points in the xy plane counter-
 lockwise, through θ, around the origin.
- To use R, the position of each point is represented by a vector.
- A rotated vector is then obtained with matrix multiplication.

The Z Rotation Matrix

- If we assume frame axes are of length 1
- $a=\cos \theta$
- $b=\sin t$ Some really useful
- $d=\cos$, videos are posted
- What abs to the schedule.

* AKA orthogonal rotation matrix

Orthogonal Rotation Matrix

- This mapping function is called

$$
R(\theta) \dot{\xi_{1}}
$$

because it depends on θ.

$\dot{\xi}_{\mathrm{R}}=R(\pi / 2) \dot{\xi}_{1}$

- Example
$R(\pi / 2)=\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$

Example, cont'd

Kinematics Models

- Goal:
- Establish. speed $\dot{\xi}=\left[\begin{array}{lll}\dot{x} & \dot{\mathrm{y}} & \dot{\theta}\end{array}\right]^{\mathrm{T}}$ as a function of the wheel speeds $\dot{\varphi}_{i}$, steering angles β_{i}, steering speeds $\dot{\beta}_{i}$ and the geometric parameters of the robot (configuration coordinates)

- $\dot{\varphi}$ measured in radians $/ \mathrm{sec}$, so $\dot{\varphi} / 2 \pi$ is revolutions $/ \mathrm{sec}$
- In one revolution wheel translates $2 \pi r$ linear units
- Translational velocity is $2 \pi r(\dot{\varphi} / 2 \pi)=r \dot{\varphi}$

Forward Kinematics Models

- Goal:
- Establish. speed $\dot{\xi}=\left[\begin{array}{lll}\dot{x} & \dot{\mathrm{y}} & \dot{\theta}\end{array}\right]^{\mathrm{T}}$ as a function of the wheel speeds $\dot{\varphi}_{i}$, steering angles $\bar{\beta}_{\mathrm{i}}$, steering speeds $\dot{\beta}_{i}$ and the geometric parameters of the robot (configuration coordinates)
- Forward kinematics:
"If I do this, what will happen?"

$$
\dot{\xi}=\left[\begin{array}{l}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]=f\left(\dot{\varphi}_{1}, \cdots \dot{\varphi}_{n}, \beta_{1}, \cdots \beta_{m}, \dot{\beta}_{1}, \cdots \dot{\beta}_{m}\right)
$$

Differential Drive Model

- The robot has:
- Two wheels - radius r
- Point P centered between wheels
- Each wheel is distance I (e) from P
- Wheels have rotational velocity $\dot{\varphi}_{1}$ and $\dot{\varphi}_{2}$
- Forward kinematic model

$$
\dot{\xi}_{1}=\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]=f\left(\ell, r, \theta, \dot{\varphi}_{1}, \dot{\varphi}_{2}\right)
$$

- Mapping from global to local is

$$
\dot{\xi}_{R}=R(\theta) \dot{\xi}_{1} \text {, so } \dot{\xi}_{1}=R^{-1}(\theta) \dot{\xi}_{R}
$$

Differential Drive (cont.)

- Wheel rotation never contributes to Y_{R}. Why?
- What about θ ?
- Wheel I spin makes robot rotate counterclockwise
- Pivot around wheel 2 (left wheel)
- Translational velocity is $r \dot{\varphi}$

- Traces circle with radius 21

Differential Drive: The Punchline

$$
\dot{\xi}_{1}=R^{-1}(\theta) \dot{\xi}_{R}=R^{-1}(\theta)\left[\begin{array}{c}
r\left(\dot{\varphi}_{1}+\dot{\varphi}_{2}\right) / 2 \\
0 \\
r\left(\dot{\varphi}_{1}-\dot{\varphi}_{2}\right) / 21
\end{array}\right]
$$

Example

$\left.[\sin (\alpha+\beta)-\cos (\alpha+\beta)(-l) \cos \beta] R(\theta) \dot{\xi}_{I}-r \dot{\varphi}=0\right\}$ round $[\cos (\alpha+\beta) \sin (\alpha+\beta) l \sin \beta] R(\theta) \dot{\xi}_{I}-r \dot{\varphi}=0 \quad \int$ sliding

- Suppose that the wheel A is in position such that $\alpha=0$ and $\beta=0$
- Puts contact point of wheel on X_{l}, with plane of the wheel oriented parallel to $Y_{\text {, }}$
- If $\theta=0$, then the sliding constraint reduces to:
$\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}\dot{x} \\ \dot{y} \\ \dot{\theta}\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\left[\begin{array}{l}\dot{x} \\ \dot{y} \\ \dot{\theta}\end{array}\right]=0$

Not Omnidirectional: Why?

$[\sin (\alpha+\beta)-\cos (\alpha+\beta)(-l) \cos \beta] R(\theta) \dot{\xi}_{I}-r \dot{\varphi}=0$ $[\cos (\alpha+\beta) \sin (\alpha+\beta) l \sin \beta] R(\theta) \dot{\xi}_{I}-r \dot{\varphi}=0$

- Can constraints be satisfied for ANY $\dot{\xi}_{\text {? }}$?
- How will constraints be used?
- Once again, maneuverability / capability is...?

Inversely proportional to complexity of control
Capability $\propto \frac{1}{\text { Control Complexity }}$

