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Kinematics 
Transforms & Wheels 
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u  2D transformations

u  Rolling and 

Class Today 
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u  By now you should have:
u  Built robot
u  Installed Raspbian

u  Next important step: what will your architecture be?
u  Code and version control?
u  Message passing and comms infrastructure?

u  Turnins
u  Writeup of architecture
u  Code to control servos and read sensors
u  Video of a small demo

Project Next Steps Kinematics 
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Mobile Kinematics: Concepts 
u  Forward Kinematics: 

u  Parameters à Configuration

u  Inverse Kinematics (IK):
u  Configuration à Parameters
u  I want to be in this configuration. �

What motions should I make?

u  Mobile configuration = position and orientation �
with respect to an arbitrary initial frame I

u  Understanding mobile robot motion starts with 
understanding constraints on the robot’s mobility.
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Wheeled Motion Control 
u  Requirements for understanding/controlling motion:

1.  Kinematic / dynamic model of the robot
2.  Model of interaction between the wheel and the ground
3.  Definition of required motion

u  What speed and position controls are there? Are possible?
4.  A control policy that satisfies the requirements
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u  Sequence of events:
1.  Power on: position = (0,0), orientation = due north
2.  Rotate 15° right
3.  Move forward 2 meters
4.  Observe obstacle
5.  Rotate 30° left
6.  Move forward 1 meter

u  Position – (?,?), orientation = ?°

u  Where’s the obstacle?

What We’re Trying to Do 
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u  A projection of a vector v onto an axis is the amount 
of change along that axis along the length of v.

u  This is the change in �
position in that axis

u  Here:
u  a = ΔxI
u  b = ΔyI

u  This is the change in �
position in that axis

Projections 
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Specifying Transforms 

ξI = 
x
y
θ

u  How does a robot (or system) map to the global frame 
of reference?

u  Configuration = position �
and orientation

u  Position: x,y coordinates�
xI,t and yI,t
u  I = initial (global)
u  t = timestep

u  Orientation: θ
u  Angle between robot’s coordinate system and initial 

coordinate system
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u  Representing robot within an arbitrary initial frame
u  Initial frame:
u  Robot frame:
u  Robot:

u  Just the transpose

u  Goal
u  Map motions from global reference �

frame to local reference frame (and�
vice versa)

Mapping Between Frames 
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u  Global reference frame ßà 
local reference frame

u  Map motion from axes of one to 
axes of the other
u  This mapping depends on current pose

u  How do you do this mapping?

u  How do you perform a rotation 
in Euclidean spaces?
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u  How do you perform a rotation?
u  A rotation matrix is used to perform a 

rotation in Euclidean space.
u  Any point <x,y> in space (aka       ) �

can be multiplied by some matrix...
 

u  (spoiler : it’s à                                �
usually)

Mapping Between Frames 
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u  The result is the coordinates in the other 
frame, rotated by θaround z.
u  This matrix rotates points in the xy plane 

counter-clockwise, through θ, around the 
origin.

R(θ ) = cosθ −sinθ
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u  Global reference frame �
local reference frame

u  Map motion from axes of one to 
axes of the other
u  This mapping depends on current pose

u  Use orthogonal reference frame*:

Mapping Between Frames 
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R θ( ) =
cosθ −sinθ 0
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*this one rotates around z
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The Z Rotation Matrix 

[  ] a
b

yI

xIa

b
θ 

  v

*	AKA	orthogonal	rotation	matrix	
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The Z Rotation Matrix* 
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*	AKA	orthogonal	rotation	matrix	
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u  If we assume frame axes are of length 1…

The Z Rotation Matrix 
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*	AKA	orthogonal	rotation	matrix	
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u  If we assume frame axes are of length 1
u  a = cos θ
u  b = sin θ
u  c = -sin θ
u  d = cos θ

The Z Rotation Matrix 

R(θ ) = cosθ −sinθ
sinθ cosθ
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*	AKA	orthogonal	rotation	matrix	
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u  If we assume frame axes are of length 1
u  a = cos θ
u  b = sin θ
u  c = -sin θ
u  d = cos θ

u  What about z?

The Z Rotation Matrix 

R(θ ) = cosθ −sinθ
sinθ cosθ
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*	AKA	orthogonal	rotation	matrix	
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u  If we assume frame axes are of length 1
u  a = cos θ
u  b = sin θ
u  c = -sin θ
u  d = cos θ

u  What about z?

The Z Rotation Matrix 

R θ( ) =
cosθ −sinθ 0
sinθ cosθ 0
0 0 1
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*	AKA	orthogonal	rotation	matrix	
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R θ( ) =
cosθ −sinθ 0
sinθ cosθ 0
0 0 1
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u  If we assume frame axes are of length 1
u  a = cos θ
u  b = sin θ
u  c = -sin θ
u  d = cos θ

u  What about z?

The Z Rotation Matrix 
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Some	really	useful	
videos	are	posted	
to	the	schedule.	

*	AKA	orthogonal	rotation	matrix	
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u  How do you perform a rotation, again?
u  A rotation matrix is used to perform a 

rotation in Euclidean space.

Mapping Between Frames 
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u  Rotates points in the xy plane counter-

clockwise, through θ, around the origin.
u  To use R, the position of each point is 

represented by a vector.
u  A rotated vector is then obtained with 

matrix multiplication.
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u  This mapping function is called�
�
�
because it depends on θ.

u  Example:

Orthogonal Rotation Matrix 

R θ( ) =
cosθ −sinθ 0
sinθ cosθ 0
0 0 1
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tan(pi/2) =infty
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sec(pi/2)=inftyR π / 2( ) =

0 1 0
−1 0 0
0 0 1
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Z	rotation		
matrix	

Why?	
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u  Given some velocity in I:

u  We can compute motion 
along XR and YR.
u  (Or vice versa.)

u  This example:
u  Motion along XR= 
u  Motion along YR= 

Velocity Vector 
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Example, cont’d 

= π/2 

No longer 
around Z! 
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u  Goal:
u  Establish speed                       as a function of the wheel 

speeds    , steering angles     , steering speeds     and the 
geometric parameters of the robot (configuration coordinates)

u  ϕ measured in radians/sec, so ϕ/2π is revolutions/sec

u  In one revolution wheel translates 2πr linear units

u  Translational velocity is 2πr(ϕ/2π) = rϕ

Kinematics Models 

ϕ . β 
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Forward Kinematics Models 
u  Goal:

u  Establish speed                       as a function of the wheel 
speeds    , steering angles     , steering speeds     and the 
geometric parameters of the robot (configuration coordinates)

u  Forward kinematics:

    “If I do this, what will happen?”
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Inverse Kinematics Models 

) , ,   ( θ 
. . . 

y x f [ ]     1 1 1 β β β β ϕ ϕ 
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m m n = 

u  Goal:
u  Establish speed                       as a function of the wheel 

speeds    , steering angles     , steering speeds     and the 
geometric parameters of the robot (configuration coordinates)

u  Inverse kinematics:

    “If I want this to happen, what should I do?”
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Differential Drive Model 
u  The robot has:

u  Two wheels - radius r
u  Point P centered between wheels
u  Each wheel is distance l (l) from P
u  Wheels have rotational velocity ϕ1 and ϕ2

u  Forward kinematic model

u  Mapping from global to local is

           ξR = R(θ) ξI , so ξI = R-1(θ) ξR

. . 

ξI = y 
x 

θ 
. 
. 
. 

. 
= f(l, r, θ, ϕ1, ϕ2) 

. . 

. . . . 
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Differential Drive (cont.) 
u  Since ξR = R(θ) ξI  ,  ξI = R-1(θ) ξR

u  Compute how wheel speeds influence ξR

u  Translate to ξI via R-1(θ)

u  Contribution to translation along XR

u  If one wheel spins and the other is still:
u  P will move at half the translational velocity �

of the wheel: 1/2r ϕ1 or 1/2r ϕ2
u  Sum these for both wheels spinning

u  XR = 1/2rϕ1 + 1/2rϕ2

u  What if they spin in opposite directions? Same direction?

. . . . . 

. 

. r 
l 

p . 

XR 

YR 

. . . 

. 
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u  Wheel rotation never contributes to YR.  Why?

u  What about θ?
u  Wheel 1 spin makes robot rotate counterclockwise
u  Pivot around wheel 2 (left wheel)
u  Translational velocity is rϕ
u  Traces circle with radius 2l
u  Rotational velocity 2π * rϕ / (2π * 2l) = rϕ / 2l 
u  Wheel 2 spin makes robot rotate clockwise
u  Sum to get net effect: θ = (rϕ1 - rϕ2) / 2l

Differential Drive (cont.) 

. 

. . 
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l 
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YR 
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Differential Drive: The Punchline 

ξI = R-1(θ) ξR = R-1(θ) 
r(ϕ1 + ϕ2) / 2 

0 
r(ϕ1 - ϕ2) / 2l 

. . 
. . 

. . 
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Wheel Constraints: Assumptions 
u  Movement is on a horizontal plane

u  Wheels:
u  Make point contact
u  Are not deformable
u  Are connected to rigid chassis
u  Have steering axes orthogonal�

to surface being moved on

u  Constraints
u  Pure rolling 
u  No slipping, skidding or sliding 
u  No friction in rotation around contact point
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Wheel Constraints: Assumptions 
u  Movement is on a horizontal plane

u  Wheels:
u  Make point contact
u  Are not deformable
u  Are connected to rigid chassis
u  Have steering axes orthogonal�

to surface being moved on

u  Constraints
u  Pure rolling 
u  No slipping, skidding or sliding 
u  No friction in rotation around contact point
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How	do	we	
represent	these	
constraints?	
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Wheels: Round Constraint 
Round constraint: the wheel must be (perfectly) 
round. Deformation violates this.

ξI = y 
x 

θ 
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R
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Wheels: Rolling Constraint 
Rolling constraint: all motion along wheel plane (in 
the direction of v) must be accompanied by the 
same amount of wheel spin so that there is pure 
rolling at contact point

We’re	
discussing	
-ixed	wheel	

A
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Wheels: Sliding Constraint 
Sliding constraint: there can be no motion 
orthogonal to wheel plane (perpendicular to v), 
otherwise wheel skids

So	let’s 
formalize 
these a bit.	
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Wheels: Rolling Constraint (2) 
Rolling constraint:

We’re	
discussing	
-ixed	wheel	

A
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Wheels: Rolling Constraint (3) 
Rolling constraint:

Total motion in wheel plane

We’re	
discussing	
-ixed	wheel	

A
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Wheels: Rolling Constraint 
Rolling constraint:

Same transformation: I à R 

We’re	
discussing	
-ixed	wheel	

A
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Wheels: Round Constraint 
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Round Constraint (2) 

Angle between XR and v is
α + β - π/2
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Round Constraint (3) 

Angle between YR and v is
α + β - π
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. 

Round Constraint (4) 

When robot rotates, A has translational velocity lθ.

Component in direction of  V is  -lθcosβ.  
Why? 

Why? 
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Sliding Constraint 
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Example 

u  Suppose that the wheel A is in position such that �
α = 0 and β = 0

u  Puts contact point of wheel on XI, with plane of the 
wheel oriented parallel to YI

u  If θ = 0, then the sliding constraint reduces to:

round 

sliding 
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Steered Standard Wheel 
u This has all been for fixed wheels.
u For steered standard (spinning) wheels:

u Same as fixed wheel, but β changes over time.  
u Instantaneously, it is fixed.

(t)
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Castor (Offset) Wheel 
u Wheel contact point at B
u Steering at A
u Rigid connector AB
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Not Omnidirectional: Why? 
. 

u  Can constraints be satisfied for ANY ξI?

u  How will constraints be used?

u  Once again, maneuverability / capability is…?

    Inversely proportional to complexity of control

Capability Control Complexity
1

∝

. 


