
4/26/18

1

Kinematics
Transforms & Wheels

x1

y1

P

θ

x1

y1

P

θ

2 Slides © C. Matuszek except where noted

u  2D transformations

u  Rolling and

Class Today

4 Slides © C. Matuszek except where noted

u  By now you should have:
u  Built robot
u  Installed Raspbian

u  Next important step: what will your architecture be?
u  Code and version control?
u  Message passing and comms infrastructure?

u  Turnins
u  Writeup of architecture
u  Code to control servos and read sensors
u  Video of a small demo

Project Next Steps Kinematics
Mobile Kinematics

x1

y1

P

θ

x1

y1

P

θ

The
image

The
image

The
image

The
image

"Position"
Global Map

Perception Motion Control

Cognition

Real World
Environment

Localization

Path Environment Model
Local Map

8 Slides © C. Matuszek except where noted

Mobile Kinematics: Concepts
u  Forward Kinematics:

u  Parameters à Configuration

u  Inverse Kinematics (IK):
u  Configuration à Parameters
u  I want to be in this configuration. �

What motions should I make?

u  Mobile configuration = position and orientation �
with respect to an arbitrary initial frame I

u  Understanding mobile robot motion starts with
understanding constraints on the robot’s mobility.

x
1

y
1

P

θ

xI,1

yI,1

P

θ

ξI =
x
y
θ

9 Slides © C. Matuszek except where noted

Wheeled Motion Control
u  Requirements for understanding/controlling motion:

1.  Kinematic / dynamic model of the robot
2.  Model of interaction between the wheel and the ground
3.  Definition of required motion

u  What speed and position controls are there? Are possible?
4.  A control policy that satisfies the requirements

Global Map

Perception Motion Control

Cognition

Real World
Environment

Localization

Path
Local Map

"Position"

Environment Model

4/26/18

2

10 Slides © C. Matuszek except where noted

u  Sequence of events:
1.  Power on: position = (0,0), orientation = due north
2.  Rotate 15° right
3.  Move forward 2 meters
4.  Observe obstacle
5.  Rotate 30° left
6.  Move forward 1 meter

u  Position – (?,?), orientation = ?°

u  Where’s the obstacle?

What We’re Trying to Do
12 Slides © C. Matuszek except where noted

u  A projection of a vector v onto an axis is the amount
of change along that axis along the length of v.

u  This is the change in �
position in that axis

u  Here:
u  a = ΔxI
u  b = ΔyI

u  This is the change in �
position in that axis

Projections

yI

xI

v

a: projection
of v onto x

b:
projection
of v onto y

θ

[] a
b

13 Slides © C. Matuszek except where noted

x
1

y
1

P

θ

xI,1

yI,1

θ

Specifying Transforms

ξI =
x
y
θ

u  How does a robot (or system) map to the global frame
of reference?

u  Configuration = position �
and orientation

u  Position: x,y coordinates�
xI,t and yI,t
u  I = initial (global)
u  t = timestep

u  Orientation: θ
u  Angle between robot’s coordinate system and initial

coordinate system

17 Slides © C. Matuszek except where noted

u  Representing robot within an arbitrary initial frame
u  Initial frame:
u  Robot frame:
u  Robot:

u  Just the transpose

u  Goal
u  Map motions from global reference �

frame to local reference frame (and�
vice versa)

Mapping Between Frames

I []
T y x θ ξ =

{ }II YX ,

{ }RR YX ,

YR

XR
YI

XI

θ

P

YR

XR

θ

YI

XI

{ }II YX , { }RR YX ,

18 Slides © C. Matuszek except where noted

u  Global reference frame ßà
local reference frame

u  Map motion from axes of one to
axes of the other
u  This mapping depends on current pose

u  How do you do this mapping?

u  How do you perform a rotation
in Euclidean spaces?

Mapping Between Frames

YR

XR
YI

XI

θ

P

YR

XR

θ

YI

XI

{ }II YX , { }RR YX ,

19 Slides © C. Matuszek except where noted

u  How do you perform a rotation?
u  A rotation matrix is used to perform a

rotation in Euclidean space.
u  Any point <x,y> in space (aka) �

can be multiplied by some matrix...

u  (spoiler : it’s à �
usually)

Mapping Between Frames

YR

XR
YI

XI

θ

P

YR

XR

θ

YI

XI

u  The result is the coordinates in the other
frame, rotated by θaround z.
u  This matrix rotates points in the xy plane

counter-clockwise, through θ, around the
origin.

R(θ) = cosθ −sinθ
sinθ cosθ

⎡

⎣
⎢

⎤

⎦
⎥

x
y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

4/26/18

3

20 Slides © C. Matuszek except where noted

u  Global reference frame �
local reference frame

u  Map motion from axes of one to
axes of the other
u  This mapping depends on current pose

u  Use orthogonal reference frame*:

Mapping Between Frames

YR

XR
YI

XI

θ

P

YR

XR

θ

YI

XI

{ }II YX , { }RR YX ,

R θ() =
cosθ −sinθ 0
sinθ cosθ 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

*this one rotates around z

21 Slides © C. Matuszek except where noted

The Z Rotation Matrix

[] a
b

yI

xIa

b
θ

 v

*	AKA	orthogonal	rotation	matrix	

22 Slides © C. Matuszek except where noted

The Z Rotation Matrix*

[] a
b

c
d

yI

xIa

b
θ

yR d

c

 v

*	AKA	orthogonal	rotation	matrix	

23 Slides © C. Matuszek except where noted

u  If we assume frame axes are of length 1…

The Z Rotation Matrix

[] a
b

c
d

yI

xIa

b
θ

yR d

c

 v

*	AKA	orthogonal	rotation	matrix	

24 Slides © C. Matuszek except where noted

u  If we assume frame axes are of length 1
u  a = cos θ
u  b = sin θ
u  c = -sin θ
u  d = cos θ

The Z Rotation Matrix

R(θ) = cosθ −sinθ
sinθ cosθ

⎡

⎣
⎢

⎤

⎦
⎥

yI

xIa

b
θ

yR d

c

 v

*	AKA	orthogonal	rotation	matrix	

25 Slides © C. Matuszek except where noted

u  If we assume frame axes are of length 1
u  a = cos θ
u  b = sin θ
u  c = -sin θ
u  d = cos θ

u  What about z?

The Z Rotation Matrix

R(θ) = cosθ −sinθ
sinθ cosθ

⎡

⎣
⎢

⎤

⎦
⎥

yI

xIa

b
θ

yR d

c

 v

*	AKA	orthogonal	rotation	matrix	

4/26/18

4

26 Slides © C. Matuszek except where noted

u  If we assume frame axes are of length 1
u  a = cos θ
u  b = sin θ
u  c = -sin θ
u  d = cos θ

u  What about z?

The Z Rotation Matrix

R θ() =
cosθ −sinθ 0
sinθ cosθ 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

yI

xIa

b
θ

yR d

c

 v

*	AKA	orthogonal	rotation	matrix	

27 Slides © C. Matuszek except where noted

R θ() =
cosθ −sinθ 0
sinθ cosθ 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

u  If we assume frame axes are of length 1
u  a = cos θ
u  b = sin θ
u  c = -sin θ
u  d = cos θ

u  What about z?

The Z Rotation Matrix

yI

xIa

b
θ

yR d

c

 v

Some	really	useful	
videos	are	posted	
to	the	schedule.	

*	AKA	orthogonal	rotation	matrix	

28 Slides © C. Matuszek except where noted

u  How do you perform a rotation, again?
u  A rotation matrix is used to perform a

rotation in Euclidean space.

Mapping Between Frames

YR

XR
YI

XI

θ

P

YR

XR

θ

YI

XI
u  Rotates points in the xy plane counter-

clockwise, through θ, around the origin.
u  To use R, the position of each point is

represented by a vector.
u  A rotated vector is then obtained with

matrix multiplication.

=
R

R

I

I

cosθ −sinθ
sinθ cosθ

⎡

⎣
⎢

⎤

⎦
⎥

29 Slides © C. Matuszek except where noted

u  This mapping function is called�
�
�
because it depends on θ.

u  Example:

Orthogonal Rotation Matrix

R θ() =
cosθ −sinθ 0
sinθ cosθ 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

YR

XR
YI

XI

θ

() I R ξ θ
.

cos(pi/2)=0
sin(pi/2) =1
tan(pi/2) =infty
cot(pi/2) =0
csc(pi/2)=1
sec(pi/2)=inftyR π / 2() =

0 1 0
−1 0 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

() I R R ξ π/2 ξ
. .

=

= π/2

Z	rotation		
matrix	

Why?	

30 Slides © C. Matuszek except where noted

u  Given some velocity in I:

u  We can compute motion
along XR and YR.
u  (Or vice versa.)

u  This example:
u  Motion along XR=
u  Motion along YR=

Velocity Vector

YR

XR
YI

XI

θ = π/2

y
x

θ
.
.
.

y .

-x .

31 Slides © C. Matuszek except where noted

Example, cont’d

= π/2

No longer
around Z!

4/26/18

5

33 Slides © C. Matuszek except where noted

u  Goal:
u  Establish speed as a function of the wheel

speeds , steering angles , steering speeds and the
geometric parameters of the robot (configuration coordinates)

u  ϕ measured in radians/sec, so ϕ/2π is revolutions/sec

u  In one revolution wheel translates 2πr linear units

u  Translational velocity is 2πr(ϕ/2π) = rϕ

Kinematics Models

ϕ . β

. .

. .

[]
T

y x θ ξ
. . . .

=
i β

.
i ϕ

.
i β

34 Slides © C. Matuszek except where noted

Forward Kinematics Models
u  Goal:

u  Establish speed as a function of the wheel
speeds , steering angles , steering speeds and the
geometric parameters of the robot (configuration coordinates)

u  Forward kinematics:

 “If I do this, what will happen?”

) , , , , , (1 1 1 m m n f y

x

β β β β ϕ ϕ
θ

ξ
. … . … . … .

.

.

.
.

= =

[]
T

y x θ ξ
. . . .

=
i β

.
i ϕ

.
i β

35 Slides © C. Matuszek except where noted

Inverse Kinematics Models

) , , (θ
. . .

y x f [] 1 1 1 β β β β ϕ ϕ
.

…
. … . … . T

m m n =

u  Goal:
u  Establish speed as a function of the wheel

speeds , steering angles , steering speeds and the
geometric parameters of the robot (configuration coordinates)

u  Inverse kinematics:

 “If I want this to happen, what should I do?”

[]
T

y x θ ξ
. . . .

=
i β

.
i ϕ

.
i β

36 Slides © C. Matuszek except where noted

Differential Drive Model
u  The robot has:

u  Two wheels - radius r
u  Point P centered between wheels
u  Each wheel is distance l (l) from P
u  Wheels have rotational velocity ϕ1 and ϕ2

u  Forward kinematic model

u  Mapping from global to local is

 ξR = R(θ) ξI , so ξI = R-1(θ) ξR

. .

ξI = y
x

θ
.
.
.

.
= f(l, r, θ, ϕ1, ϕ2)

. .

. . . .

r
l

p .

XR

YR

37 Slides © C. Matuszek except where noted

Differential Drive (cont.)
u  Since ξR = R(θ) ξI , ξI = R-1(θ) ξR

u  Compute how wheel speeds influence ξR

u  Translate to ξI via R-1(θ)

u  Contribution to translation along XR

u  If one wheel spins and the other is still:
u  P will move at half the translational velocity �

of the wheel: 1/2r ϕ1 or 1/2r ϕ2
u  Sum these for both wheels spinning

u  XR = 1/2rϕ1 + 1/2rϕ2

u  What if they spin in opposite directions? Same direction?

.

.

. r
l

p .

XR

YR

. . .

.

.

38 Slides © C. Matuszek except where noted

u  Wheel rotation never contributes to YR. Why?

u  What about θ?
u  Wheel 1 spin makes robot rotate counterclockwise
u  Pivot around wheel 2 (left wheel)
u  Translational velocity is rϕ
u  Traces circle with radius 2l
u  Rotational velocity 2π * rϕ / (2π * 2l) = rϕ / 2l
u  Wheel 2 spin makes robot rotate clockwise
u  Sum to get net effect: θ = (rϕ1 - rϕ2) / 2l

Differential Drive (cont.)

.

. .

. . .
r

l
p .

XR

YR

4/26/18

6

39 Slides © C. Matuszek except where noted

Differential Drive: The Punchline

ξI = R-1(θ) ξR = R-1(θ)
r(ϕ1 + ϕ2) / 2

0
r(ϕ1 - ϕ2) / 2l

. .
. .

. .

40 Slides © C. Matuszek except where noted

Wheel Constraints: Assumptions
u  Movement is on a horizontal plane

u  Wheels:
u  Make point contact
u  Are not deformable
u  Are connected to rigid chassis
u  Have steering axes orthogonal�

to surface being moved on

u  Constraints
u  Pure rolling
u  No slipping, skidding or sliding
u  No friction in rotation around contact point

r ϕ
.

v

P

YR

XR

θ

YI

XI

41 Slides © C. Matuszek except where noted

Wheel Constraints: Assumptions
u  Movement is on a horizontal plane

u  Wheels:
u  Make point contact
u  Are not deformable
u  Are connected to rigid chassis
u  Have steering axes orthogonal�

to surface being moved on

u  Constraints
u  Pure rolling
u  No slipping, skidding or sliding
u  No friction in rotation around contact point

r ϕ
.

v

P

YR

XR

θ

YI

XI

How	do	we	
represent	these	
constraints?	

42 Slides © C. Matuszek except where noted

Wheels: Round Constraint
Round constraint: the wheel must be (perfectly)
round. Deformation violates this.

ξI = y
x

θ
.
.
.

. R

R

R

43 Slides © C. Matuszek except where noted

Wheels: Rolling Constraint
Rolling constraint: all motion along wheel plane (in
the direction of v) must be accompanied by the
same amount of wheel spin so that there is pure
rolling at contact point

We’re	
discussing	
-ixed	wheel	

A

44 Slides © C. Matuszek except where noted

Wheels: Sliding Constraint
Sliding constraint: there can be no motion
orthogonal to wheel plane (perpendicular to v),
otherwise wheel skids

So	let’s
formalize
these a bit.	

4/26/18

7

45 Slides © C. Matuszek except where noted

Wheels: Rolling Constraint (2)
Rolling constraint:

We’re	
discussing	
-ixed	wheel	

A

46 Slides © C. Matuszek except where noted

Wheels: Rolling Constraint (3)
Rolling constraint:

Total motion in wheel plane

We’re	
discussing	
-ixed	wheel	

A

47 Slides © C. Matuszek except where noted

Wheels: Rolling Constraint
Rolling constraint:

Same transformation: I à R

We’re	
discussing	
-ixed	wheel	

A

48 Slides © C. Matuszek except where noted

Wheels: Round Constraint

49 Slides © C. Matuszek except where noted

Round Constraint (2)

Angle between XR and v is
α + β - π/2

50 Slides © C. Matuszek except where noted

Round Constraint (3)

Angle between YR and v is
α + β - π

4/26/18

8

51 Slides © C. Matuszek except where noted

.

Round Constraint (4)

When robot rotates, A has translational velocity lθ.

Component in direction of V is -lθcosβ.
Why?

Why?

52 Slides © C. Matuszek except where noted

Sliding Constraint

53 Slides © C. Matuszek except where noted

Example

u  Suppose that the wheel A is in position such that �
α = 0 and β = 0

u  Puts contact point of wheel on XI, with plane of the
wheel oriented parallel to YI

u  If θ = 0, then the sliding constraint reduces to:

round

sliding

54 Slides © C. Matuszek except where noted

Steered Standard Wheel
u This has all been for fixed wheels.
u For steered standard (spinning) wheels:

u Same as fixed wheel, but β changes over time.
u Instantaneously, it is fixed.

(t)

55 Slides © C. Matuszek except where noted

Castor (Offset) Wheel
u Wheel contact point at B
u Steering at A
u Rigid connector AB

56 Slides © C. Matuszek except where noted

Not Omnidirectional: Why?
.

u  Can constraints be satisfied for ANY ξI?

u  How will constraints be used?

u  Once again, maneuverability / capability is…?

 Inversely proportional to complexity of control

Capability Control Complexity
1

∝

.

