Kinematics
Transforms & Wheels

Project Next Steps

¢ By now you should have:
+ Built robot
¢ Installed Raspbian

¢ Next important step: what will your architecture be?
# Code and version control?
¢ Message passing and comms infrastructure?

¢ Turnins
¢ Writeup of architecture
¢ Code to control servos and read sensors
¢ Video of a small demo

Mobile Kinematics: Concepts
8|

# Forward Kinematics:
¢ Parameters = Configuration

@ Inverse Kinematics (IK):
+ Configuration = Parameters

¢ | want to be in this configuration.
What motions should | make?

# Mobile configuration = position and orient—atiyt
with respect to an arbitrary initial frame I

¢ Understanding mobile robot motion starts with
understanding constraints on the robot's mobility.

Class Today
¢ 2D transformations

# Rolling and
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Kinematics
Mobile Kinematics

+
Environment Model Path
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*Position”
Global Map

Wheeled Motion Control
EN

¢ Requirements for understanding/controlling motion:
I Kinematic / dynamic model of the robot
2. Model of interaction between the wheel and the ground
3. Definition of required motion
¢ What speed and position controls are there? Are possible?
4. A control policy that satisfies the requirements

"Position"
Global Map

Environment Model Path
Loc?l Map

Perception .\ ALIC]
Environmen




What We're Trying to Do

@ Sequence of events:

Power on: position = (0,0), orientation = due north
Rotate |5° right

Move forward 2 meters

Observe obstacle

Rotate 30° left

6. Move forward | meter

goAa W

# Position — (1,7), orientation = ?°

O
¢ Where's the obstacle? 'EI
U

Specifying Transforms

¢ How does a robot (or system) map to the global frame
of reference? v

! X

# Configuration = position E = [y}

and orientation \J

¢ Position: x,y coordinates

xgandy,  |eoooo- ----
o [ = initial (global) Y
1 1
¢ 1= timestep X
1

¢ Orientation: 6

¢ Angle between robot’s coordinate system and initial
coordinate system

Mapping Between Frames

¢ Global reference frame €->
local reference frame Y

HRAR RIen A

¢ Map motion from axes of one to
axes of the other
¢ This mapping depends on current pose

¢ How do you do this mapping?

¢ How do you perform a rotation
in Euclidean spaces?

&

Projections

# A projection of a vector v onto an axis is the amount
of change along that axis along the length of v.

# This is the change in
position in that axis

& Here:
¢ a=NAx
* b=ANy,

¢ This is the change in
position in that axis

a: projection
of v onto x
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Mapping Between Frames

# Representing robot within an arbitrary initial frame
o Initial frame: 1.1} i
¢ Robot frame: {XR,YR}
@ Robot: &= » e]T
# Just the transpose

¢ Goal
¢ Map motions from global reference
frame to local reference frame (and
vice versa)

o — e}

Mapping Between Frames

¢ How do you perform a rotation?
¢ A rotation matrix is used to perform a i
rotation in Euclidean space.
x
¢ Any point <x,y> in space (aka [ y ])
can be multiplied by some matrix...

# (spoiler:it's > R(6)= C.OSG -sing
usually) sinf@  cos

¢ The result is the coordinates in the other
frame, rotated by 6 around z.
¢ This matrix rotates points in the xy plane

counter-clockwise, through 6, around the
origin. R —




Mapping Between Frames
¢ Global reference frame «— .
local reference frame
HRAR = RIeR
¢ Map motion from axes of one to
axes of the other
¢ This mapping depends on current pose ! X
& Use orthogonal reference frame*: 7 P
cosf -sinf 0 o
sinf cosf 0 i X
0 0 1 Y
*this one rotates around z
. . %
The Z Rotation Matrix

Vi

X

* AKA orthogonal rotation matrix

The Z Rotation Matrix

¢ If we assume frame axes are of length 1
¢ a=cos 6
¢ b=sin6 Y
¢ c=-sinf
* d=cos 6 R©O)= Cf)SH -sinf
sinf  cosf
v
CA .
o 1

* AKA orthogonal rotation matrix
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The Z Rotation Matrix
i
[4]
oo ‘
CA .
* AKA orthogonal rotation matrix
The Z Rotation Matrix

¢ If we assume frame axes are of length 1...

Vi

X

* AKA orthogonal rotation matrix

The Z Rotation Matrix

¢ If we assume frame axes are of length 1
¢ a=cos 6
¢ b=sinb Vi
¢ c=-sinf
® d=cos 6 R©O)= Cf)SH -sinf
¢ What about z? sinf  cosf
YR!
v
A .
o 1

* AKA orthogonal rotation matrix




The Z Rotation Matrix

o If we assume frame axes are of length 1
¢ a=cos 6
® b=sin6 Y
& c=-sinf cosf -sinf 0
@ d=cos 0 R(G): sinf cosf 0
¢ What about z? 0 0 1
YR
v
6 .
T 1

* AKA orthogonal rotation matrix

Mapping Between Frames
¢ How do you perform a rotation, again?

# A rotation matrix is used to perform a 4
rotation in Euclidean space.

[l’k} {xl}
Yr R
¢ Rotates points in the xy plane counter- !

clockwise, through 6, around the origin.

cosf -sinf
sinf  cos6

# To use R, the position of each point is
represented by a vector.

¢ A rotated vector is then obtained with
matrix multiplication.

X

Velocity Vector

¢ Given some velocity in I

|

¢ We can compute motion
along Xz and Y5

¢ (Or vice versa.)

¢ This example:
# Motion along Xg= ¥
¢ Motion along Y= -x
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The Z Rotation Matrix

o If we assume frame axes are of length 1
¢ a=cos @

¢ b=t gome really useful
& c=-sin d ted cosf -sinf 0
e d=cos( VIOEOS are poste sing  cosd 0
* Whatabc  to the schedule. 0 0 1
Xy

* AKA orthogonal rotation matrix

Orthogonal Rotation Matrix

# This mapping function is called
R (0) &
because it depends on 6.

cosf -sinf 0
R(0)=| sinf cos® 0

0 0 1 _
Z rotation cos(pi/2)=0
- . tri sin(pi/2) =1
Er =R (w/2) &1 matrix ity
Example: cot(pi/2) =0
¢ amee 0 10 csc(pi/2)=1
R(#/2)=| -1 0 0 | why? sec(pi/2)=infty
0 01
I
Example, cont’d
No longer ¥,
r around Z!
cos® sind 0| Ar
R(®) = | _5in@ cosd 0
0o o 1
0=m/2
_ i ‘1
. T 0 10 y
& = RS = |1 00| |7 = |-+ .
00 1[6 8 M




Kinematics Models

¢ Goal:

. . . . T
¢ Establish speed E=[X y H] as a function of the wheel
speeds @i, steering angles @ , steering speeds fi and the
geometric parameters of the robot (configuration coordinates)

@ ¢ measured in radians/sec, so /21 is revolutions/sec

4 In one revolution wheel translates 27r linear units

¢ Translational velocity is 2mr(@/2m) = r¢

Inverse Kinematics Models

¢ Goal:

. . . - T
# Establish speed E=[X y 9] as a function of the wheel
speeds @i, steering angles fi , steering speeds Bi and the
geometric parameters of the robot (configuration coordinates)

# Inverse kinematics:
“If | want this to happen, what should | do?”
Bu] = £, 6)

[60 = @ B Ba B

Differential Drive (cont.)

o Since Eg = R(0) § , & =R(8) &g
¢ Compute how wheel speeds influence éR ]
# Translate to ‘é, via R(6) Yr

+ Contribution to translation along X 0O

# If one wheel spins and the other is still:

of the wheel: 1/12r¢, or 1/12r¢,

¢ P will move at half the translational velocity '[T

]

# Sum these for both wheels spinning
® Xg = 11209, + 1/2rp,

¢ What if they spin in opposite directions? Same direction?

Forward Kinematics Model

¢ Goal: . o
# Establish speed E=[X y H] as a function of the wheel
speeds @i, steering angles fi , steering speeds fi and the
geometric parameters of the robot (configuration coordinates)
+ Forward kinematics:

“If | do this, what will happen?”

X
E- [y] f(Cbl""fbn’[il""ﬁm’[:’m‘"[.im)
0
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Differential Drive Model

¢ The robot has:
¢ Two wheels - radius r Xr
# Point P centered between wheels
# Each wheel is distance | (¢) from P
& Wheels have rotational velocity ¢, and ¢,

¢ Forward kinematic model
X
g=|y| =fier o @y, )

. r|T p
. |
0

¢ Mapping from global to local is
2 =R(0)§ 50§ =R"(6) &

Differential Drive (cont.)
¢ Wheel rotation never contributes to Y. Why?
¢ What about 67

¢ Wheel | spin makes robot rotate counterclockwise Xr
# Pivot around wheel 2 (left wheel)

@ Translational velocity is r¢p Y

# Traces circle with radius 2|

# Rotational velocity 2m * rp / (2 * 2I) = rp / 21 o

¢ Wheel 2 spin makes robot rotate clockwise
# Sum to get net effect: 6 = (rg, - rgp,) / 2!

P .




Differential Drive: The Punchlins

_ _ Mg +¢p) /2
§=R'0)&=R'0O) | 0
r(épq - o) / 21

Wheel Constraints: Assumptio

¢ Movement is on a horizontal plane ¢r
¢ Wheels:

& Make poi How do we

¢ Arenot ¢ represent these

¢ Areconr constraints?

¢ Have steering axes ortnogonal
to surface being moved on

¢ Constraints
+ Pure rolling
¢ No slipping, skidding or sliding
+ No friction in rotation around contact point

Wheels: Rolling Constraint

Rolling constraint: all motion along wheel plane (in
Yp  the direction of v) must be accompanied by the
A same amount of wheel spin so that there is pure
rolling at contact point

/
/&B - We're
P - discussing
/- l < fixed wheel

Robot chassis
_____ o, r A
I A ; &
\

Wheel Constraints: Assumpti

¢ Movement is on a horizontal plane

¢ Wheels:
¢ Make point contact
¢ Are not deformable
¢ Are connected to rigid chassis

¢ Have steering axes orthogonal
to surface being moved on

+ Constraints
« Pure rolling
¢ No slipping, skidding or sliding

# No friction in rotation around contact point
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Wheels: Round Constraint

Round constraint: the wheel must be (perfectly)
Tp round. Deformation violates this.
. ).(R
§ = ?"R
Or

Wheels: Sliding Constraint

Sliding constraint: there can be no motion
Tp orthogonal to wheel plane (perpendicular to v),

otherwise wheel skids

So let’s
formalize
, these a bit.

/&/ -
Ve
Robot chassis < l
_____ 9, r
°
P I > Xr




Wheels: Rolling Constraint (2

Rolling constraint:

AR [sin((x+ B) —cos(a+p) (—l)cosﬁ}R(e)EI‘”’p =0

\[3 - We're
/ - discussing

< fixed wheel

Robot chassis
————— o0, r A
I A v x
I

Wheels: Rolling Constraint

Rolling constraint:
“R [sin(a+ B) —cos(a+p) (—l)cosB}R(e)E.]—”.P =0

Same transformation: 1 2 R

B - We're
// P - discussing
Robot chassis < < fixed wheel
_____ o,r A
I A , +
©
P > X,

Round Constraint (2)

Yr sin(o.+ ) —cos(o + B) (—/)cosB:| R(B)E:,,—r(p =0

Angle between Xg and v is
oa+p-n2

Wheels: Rolling Constraint 3

Rolling constraint:

AR [sin((x+ B) —cos(a+p) (—l)cosﬁ}R(e)EI‘”’p =0

Total motion in wheel plane

Robot chassis
————— o0, r A
I A v x
I

’
\[3 - We're
/ P - discussing

//

<« fixed wheel
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Wheels: Round Constraint

v, Lsin(o+ ) —cos(a+B) (-1)cosp] ROE~rp = 0

Round Constraint (3)

Yr [sin(ow[i) —cos(o+B) (—/)cosB:| R(B)E:,,—r(p =0

Angle between Yy and v is
at+tf-m




Round Constraint (4)

Yo [sin(oHB) —cos (o + ) g—lfcosﬁ: R(e)éﬁl'@ =0

A When robot rotates, A has translational velocity 16.

o : ) Why?
Component in direction of Vis -18cosf.

, Why?
$ -

/ -

P

,r

Robot chassis

Example
[sin(oH B) —cos(o+B) (—l)cosB:| R(G)é,—r(’p =0 | round
[cos(oi+B) sin(o+B) IsinB|ROE,~rp = 0 sliding

# Suppose that the wheel A is in position such that
a=0andp =0

# Puts contact point of wheel on X, with plane of the
wheel oriented parallel to Y,

¢ If 8 = 0, then the sliding constraint reduces to:

Castor (Offset) Wheel

¢ Wheel contact point at B
Ye # Steering at A
# Rigid connector AB

81 £ |
~N
Robot chassis d( 0
, I
1 4 v
° -
P 1 > XR

Sliding Constraint

g
A [cos(ot+ B) sin(o+ ) lsinB]R(G)é,—r(p =0
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Steered Standard Wheel

@ This has all been for fixed wheels.

# For steered standard (spinning) wheels:
# Same as fixed wheel, but  changes over time.
@ Instantaneously, it is fixed.

-
-

Not Omnidirectional: Why?(
[sin(o+ B) —cos(a+B) (~I)cosp] RO~ rp = 0
[cos((x+ B) sin(o+ ) /sinB]R(G)&,—l‘@ =0

¢ Can constraints be satisfied for ANY E.‘?

¢ How will constraints be used?

¢ Once again, maneuverability / capability is...?

Inversely proportional to complexity of control
1

Capability oc Control Complexity




