

Class From Here

- First half is hardware and terminology.
-What's a robot made of?
- What determines what it can do?
- How do we talk about the different needs and goals?
- High-level overview of many topics
- Lots of manipulation
- Second half is software, problem solving, and control.
- More technical, more in-depth, more math
- Big problems: kinematics; localization; cognition
- Homeworks and exams will be different
- Mostly mobile robotics

Class Today

- Overview of second half of semester
- Schedule updates
- Project updates
- Review of concepts
- Midterm
- Will be returned Thursday.
- Overview of topics Thursday.
- Kinematics I

Schedule From Here

- HW 3 canceled (as I'm sure you noticed)
- Didn't have a kinematics lecture before the midterm, so...
- Homeworks from here will be problem sets and writing
- The project will be plenty of coding
- Schedule \rightarrow

Apr 10	Project Milestone 2 due
Apr 12	HW 3 posted (midnight)
Apr 19	Project milestone 3 due
Apr 26	HW 3 due HW 4 posted (midnight)
May 3	Project milestone 4: final turnin
May 10	HW 4 due
May 15	Project milestone 5: writeup due

Project Next Steps

- By now you should have:
- Built Robot
- Installed Raspbian
- Next important step: what will your architecture be?
- Code and version control?
- Message passing and comms infrastructure?

Kinematics

-What is kinematics?
The study of the motion of objects.
2. The study of the geometrically possible motion of a body or system of bodies (regardless of causes and effects of motion).

- Movement determines the (eventual) position and orientation of the robot
- Mobile: position and orientation wrt. some initial frame
- Manipulator: position and orientation of end effector
- Writeup of architecture
- Code to control servos and read sensors
- Video of a small demo

Review: Kinematic Models

Models how a system can move in the world.

- With respect to one another and the world
- Configuration: where are all the points on it?
- State: and how are those points moving?
- Manipulators: links, joints, base
- Manipulator links from a chain
- Serial or parallel (mostly)
- Mobile robots: possible $x / y / z$ movement
- Omni wheels \neq wheels \neq flying

Review: Frames of Reference

- A coordinate system plus point(s) that locate/orient it
- Usually x, y, and sometimes z coordinates, lus origin
- Things move with respect to some frame of reference.

Forward Kinematics

- Find position and orientation from parameters
- Mobile: robot center
- Manipulator: end effector
- Manipulator Forward Kinematics (angles to position)
- Given:
- Kinematic model plus
- Angle/displacement of each joint - I.e., manipulator parameters
- Find:
- The position of any point
- E.g.: Paintbrush is at these coordinates, pointed this way

Inverse Kinematics

- Find parameters from position and
- Mobile: robot center
- Manipulator: end effector
- Manipulator IK (position to angles)
- Given:
- Parameters and kinematics model plus
- Desired position/orientation of some point on the robot
- Find:
- Parameters: angle/displacement of each joint to obtain that position

Why?

We have direct control over joints.

We have indirect control over robot's position in the world. If we want the paintbrush here...

Position and Orientation				
15				
What do these mean for...	Position: Where is it?		What's its orientation?	
Mobile Robot	On an $\{x, y\}$ plane	$4{ }^{6}$	Heading θ	- 6
Manipulator	In some $\{x, y, z\}$ space	5et	$\{r / p / y\}$ of end effector	

More on Frames of Reference

- We always have (at least) two frames of reference
- Global (or initial) frame of reference: the world the system exists in
- Local (or robot) frame of reference: grounded in the system - If she turns, they aren't in agreement - they differ by θ

