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Manipulation 
Configurations 

Many slides adapted from: 
S. N. Kale, Assistant Professor, PVPIT, Budhgaon 

www.amci.com/tutorials/tutorials-stepper-vs-servo.asp 
www.modmypi.com/blog/whats-the-difference-between-dc-servo-stepper-motors 

en.wikipedia.org 
All other content © Cynthia Matuszek 2018 

2 

u  What’s a link?

u  What’s a joint?

u  What’s a base?

u  What kinds of joint �
are there?

u  What’s a configuration?

u  How is it specified?

u  What’s an end effector?

Questions… 
u  A rigid, connecting piece

u  Where two links move relative 
to each other

u  The robot’s “starting point” – 
furthest from end effector

u  Revolute and prismatic

u  Current orientation and position 
of manipulator

u  Per joint, using angle and distance

u  The interactive bit on the end
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u  A system has n DoFs if exactly n parameters are 
required to completely specify the configuration.

u  For a manipulator :
u  Configuration can be specified by n joint parameters, so
u  # of DoFs = dimension of the configuration space
u  So, # number of joints determines DoFs

u  Rigid object in 3D space has six parameters
u  3 positioning (x, y, z), 3 orientation (roll, pitch and yaw angles)

u  DoFs < 6 ⇒ arm cannot reach every point in 
workspace with arbitrary orientation.

DoFs for Manipulation 

Spong, Hutchinson, Vidyasagar. Robot Modeling and Control. 2006. 
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u  DoFs < 6 ⇒ arm cannot reach every point in 
workspace with arbitrary orientation

u  Sometimes you need more
u  E.g., dealing with obstacles

u  DoFs > 6 is kinematically�
redundant

u  Difficulty of control problem as # DoFs grows?
u  Increases rapidly with the number of links

u  Every 2 links need a joint
u  Control     1/Maneuverability

Notes on DoFs 

Spong, Hutchinson, Vidyasagar. Robot Modeling and Control. 2006. 
Ehsan Rezapour. Pettersen, Gravdahl, Liljebäck, Kelasidi. Robotics and Biomimetics. 2014. 
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Configurations 

S. N. Kale, Assistant Professor, PVPIT, Budhgaon 
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Configuration Example 
u  So this is?

RRR

Articulated

S. N. Kale, Assistant Professor, PVPIT, Budhgaon 
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RPY Again: Spherical Joint 

Spong, Hutchinson, Vidyasagar. Robot Modeling and Control. 2006. 
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RPY Again: Whole Gripper 

Yaw 

S. N. Kale, Assistant Professor, PVPIT, Budhgaon 

9 

u  Configuration: location of every point�
on system (manipulator)

u  Configuration can be inferred from a �
set of values for joint variables

u  How can we specify?
u  Links are rigid, base is (assumed to be) fixed
u  So if we know values for the joint variables 

u  Angle for R joints (θ), offset for P joints (d)
u  Can infer location of any point

u  Set of all possible configurations: configuration space

Configuration Space 

Spong, Hutchinson, Vidyasagar. Robot Modeling and Control. 2006. 

Links	

Base	
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Kinematic Model 

S. N. Kale, Assistant Professor, PVPIT, Budhgaon 
Spong, Hutchinson, Vidyasagar. Robot Modeling and Control. 2006. 

 

u  Link specification + joint specification
u  Configuration space can be derived from kinematic model

u  How joint movement relates to link motion

u  Assumptions:
u  Desired state of the robot can be specified by changes to joints
u  Any set of joint states can be specified
u  When specified, the links will execute as instructed
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Configuration Spaces, cont’d 
u  Configuration: location of all points at a point in time

u  Specified by state of every joint (θor d)
u  Can treat these as a vector, q
u  Example: if θ1=60°, d1=3cm, and θ2=12.2° (ß RPR)!
u  q = <q1, q2, q3,> = <60, 3, 12.2>

u  Configuration space: set of all possible configurations

u  This is also called joint space.

u  Doesn’t say anything about dynamics.
u  How is it moving? How CAN it move?
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u  State: manipulator’s configuration plus dynamics (its 
movement) plus inputs (commands)
u  Sufficient to determine any future state of the manipulator

u  State space: set of all possible states

u  Specification: joint variables q, joint velocities q
u  Acceleration is derived from joint velocities

u  States represented as a vector x = (q, q)

u  And that’s it for dynamics for now!

State Spaces 

. 

. 
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u  So where can a manipulator 
go (reach in space)?

u  Workspace:
u  Set of all possible positions of 

end effector 
u  In practice, these can be complex

u  Dexterous workspace:
u  Set of points where end effector 

can be in any orientation
u  Subset of workspace

Workspaces 

Spong, Hutchinson, Vidyasagar. Robot Modeling and Control. 2006. 
engineerjau.wordpress.com/2013/07/07/on-the-basis-of-workspaces-of-robotic-manipulators-part-1 

Kinematic model Workspace 
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Kinematic model Workspace 

u  So where can a manipulator go (reach in space)?
u  Workspace: possible positions (x,y,z) of end effector 

u  Dexterous workspace: end effector can be in any orientation

Workspaces 2 

Spong, Hutchinson, Vidyasagar. Robot Modeling and Control. 2006. 
engineerjau.wordpress.com/2013/07/07/on-the-basis-of-workspaces-of-robotic-manipulators-part-1 
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u  Accuracy: how close is manipulator to specified 
configuration/is end effector to specified coordinate?

u  Repeatability: how similar is behavior given an identical 
command?

u  We only measure joint state (using encoders)
u  Everything else is inferred from rigid links

u  Primary source of failure: Rigidity of links
u  And straightness, but that can be calibrated out

u  Given gravity, load, angular velocity, …

Measuring Success 
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u  Payload: How much can it lift?
u  Varies depending on location of end effector

u  Speed: How fast can it go?
u  How does speed of a joint relate to speed of arm?

u  Working radius: what’s the boundary it can’t reach 
past?

u  Actuation type: How is it made to go?
u  Servo, tendon-driven, underactuated, …

Other Important Features 
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u  Kinematic model: Links, joints, and base

u  Configuration space: arrangement of a manipulator
u  I.e., where are all its parts?

u  State space: Configuration + motion

u  Workspace: where it can reach, in what configuration

u  Accuracy, repeatability/precision

Summary: Specifying Manipulators Grippers, Actuating 
Grippers, Grasping 
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u  Five categories of robot grippers:
u  Impactive

u  Jaws or claws which physically grasp by direct impact upon the object
u  Ingressive

u  Pins, needles or hackles penetrate surface
u  Textile, carbon and fiberglass handling

u  Astrictive
u  Suction forces applied to surface
u  Vacuum, magneto- or electroadhesion

u  Kontugutive / Contigutive
u  Requiring direct contact for adhesion
u  Glue, surface tension or freezing

Grippers 

Monkman, Hesse, Steinmann, Schunk. Robot Grippers. 2007. 
news.nationalgeographic.com/news/2009/05/090505-robot-hand-picture.html 

grasping	
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Prismatic Impactive Gripping 
https://www.youtube.com/watch?v=qKZLx1wtFCk 
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Soft Impactive Gripping 
https://www.youtube.com/watch?v=qPVt0bZtNAM 

“…relies on 
two kinds of 
soft robot 
technology: 
pneumatics 
and dielectric 
elastomer 
actuators.”�

[Science 
Magazine, Jan. 
2018]
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Soft Pneumatic Impactive Gripping 
https://www.youtube.com/watch?v=gI0tzsO8xwc 
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And Then There’s This. 
https://www.youtube.com/watch?v=0d4f8fEysf8
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Grasps 
u  Grasp: 

u  A set of contact points on an object’s surface
u  Goal: constrain object’s movement

www.intechopen.com/books/robot-arms/robotic-grasping-of-unknown-objects1 
news.nationalgeographic.com/news/2009/05/090505-robot-hand-picture.html 
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Grasps 

www.madry.pro 
León, Morales, Sancho-Bru. Robot Grasping Foundations. 2013 

u  Grasps vary by:
u  Hand (gripper)
u  Object being grasped

u  Topology, topography, mass, surface, …
u  Type of motion desired

u  For each hand or �
hand/object pair :
u  Where to grasp it?
u  How hard?  
u  Then what?

u  Additional constraints (e.g., don’t spill)

Tool	use	

Drinking	
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u  Grasps are not obvious (easy to calculate)
u  Any given object has arbitrary contact points
u  Hand has geometry constraints, etc.

u  Synthesized trial-and-error
u  For a hand/object pair :
u  Different grasp types planned and analyzed

u  Real trial and error

The Grasping Problem 

www.cs.columbia.edu/~cmatei/graspit/ 
www.programmingvision.com/research.html 

www.cc.gatech.edu/gvu/people/faculty/nancy.pollard/grasp.html 
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u  Grasp synthesis: Find suitable set 
of contacts, given
u  Object model
u  Constraints on allowable contacts

u  Grasp points are determined
u  Mostly assume point contacts
u  Larger areas usually discretized
u  Contact model defines the force the 

manipulator exerts on contact areas

u  Grasp analysis
u  Is that grasp stable?

Grasp Planning 

León, Morales, Sancho-Bru. Robot Grasping Foundations. 2013. 
www.intechopen.com/books/robot-arms/robotic-grasping-of-unknown-objects1 
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u  How do you get the object model?

u  What are the constraints?

Current Research Questions 

www.madry.pro 
www.cs.washington.edu/robotics/3d-in-hand 

29 

u  Point to point

u  Path-following
u  Manifold: the surface an end effector can trace out

u  So how do we actuate grasping?�

Types of Motion 
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u  Continuous rotation: revolute joint that spins 360°
u  Most joints have a smaller range of motion 

u  Underactuated system (vs. fully actuated): has fewer 
actuators than DoFs
u  Some joints can’t be controlled directly
u  Most common example: fingertips

u  Back-driveable: can be moved by an external force 
without damage
u  Some kinds of actuation will break if you move them 

around in space

Actuation: Characteristics 
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u  Motor (usually a simple DC motor)
u  You put in power and it spins; increase and it goes faster

u  Servo: usually, motor + encoder + plus controller
u  Sometimes: 

u  Geared
u  Limited to 180°
u  Non-backdriveable

u  This is somewhat fuzzy!

u  Stepper motor: Spins to specific rotations
u  As a product of how it is designed

Actuators: Motors 
32 

Motors writ (very) broad 

http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/mothow.html 
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u  String/cords across joints 
through holder; pulling 
cords opens/closes joints

u  Note underactuation!

Actuators: Tendons 

Kappassov, Zhanat et al, ICMA 2013 
Ma, Raymond et al, Advances in reconfigurable mechanisms and robots II, 2016 
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Actuators: Tendon-Driven 
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u  Hydraulics: Force multiplication using incompressible liquid
    In practice: pistons, tapers, …

Hydraulics 

http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/mothow.html 

Hydraulic Motor 
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u  Use compressed air to generate energy.
u  Quick to respond
u  Not ideal under high pressures

u  Piston style
u  Generate linear force by acting on a piston
u  Convert linear force to torque (if needed) 

u  Diaphragm style
u  Rubber diaphragm and stem in circular housing
u  Good for valves requiring shorter travel

Pneumatics 


