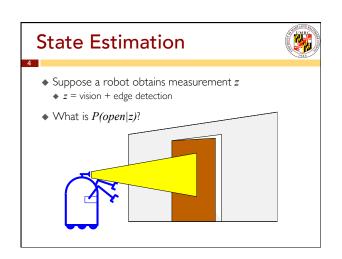


- Sensing is always related to uncertainties.
 - How can uncertainty be represented or quantified?
 - How does it propagate what's the uncertainty of a function of uncertain values?
 - How do uncertainties combine if different sensor reading are fused?
 - What is the merit of all this for robotics?



Statistics Review

- Expected value of a real-valued random variable X with density f(x):
 - $E[X] = \int x f(x)$
- Expected value of a discrete-valued random variable X with distribution P(x):
 - $E[X] = \Sigma x P(x)$
 - \blacklozenge Suppose X corresponds to outcome of die roll
 - ◆ E[X] = 1 * 1/6 + 2 * 1/6 + 3 * 1/6 + 4 * 1/6 + 5 * 1/6 + 6 * 1/6
 - E[X] = 1/6 * (1 + 2 + 3 + 4 + 5 + 6) = 3.5
- If random variables X1 and X2 are independent, E[X1*X2] = E[X1]*E[X2]

Statistics Review

- Variance: how far a set of numbers is spread out.
 E[(x μ)²] = ∫ x² f(x) μ²
 - \blacklozenge recall μ is the mean value
- If the variables are correlated, then we have covariance
- Covariance
 - $\blacklozenge\,$ Given two random variables, X1 and X2
 - $E[(X1 \mu_{X1}) (X2 \mu_{X2})]$
 - What happens in the following case?
 - When X1 is above its mean, X2 tends to be below its mean
 - \blacklozenge When X1 is above its mean, X2 tends to be way above its mean

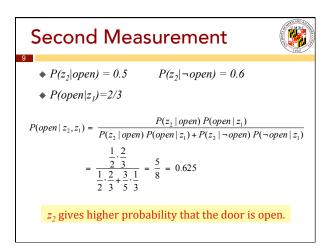
Combining Evidence

• Suppose our robot obtains another observation z₃.

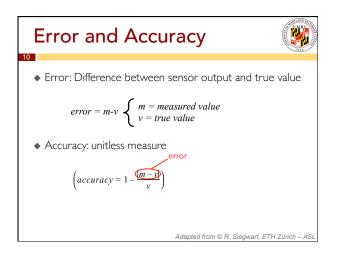
UMBC

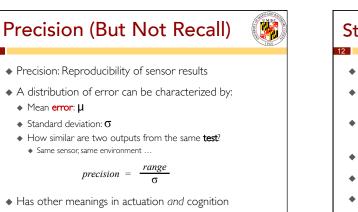
- How can we integrate this new information?
- More generally, how can we estimate $P(x | z_1...z_n)$?

P(x | z₁,...,z_n) = $\frac{P(z_n | x, z_1,..., z_{n-1}) P(x | z_1,..., z_{n-1})}{P(z_n | z_1,..., z_{n-1})}$ Markov assumption: z_n is independent of $z_1,...,z_{n-1}$ if we know x $P(x | z_1,..., z_n) = \frac{P(z_n | x) P(x | z_1,..., z_{n-1})}{P(z_n | z_1,..., z_{n-1})}$ $= \eta P(z_n | x) P(x | z_1,..., z_{n-1})$ $= \eta P(z_n | x) P(x | z_1,..., z_{n-1})$ $= \eta P(z_n | x) P(x | z_1,..., z_{n-1})$ $= \eta P(z_n | x) P(x | z_1,..., z_{n-1})$



11





Statistical Representation of Error

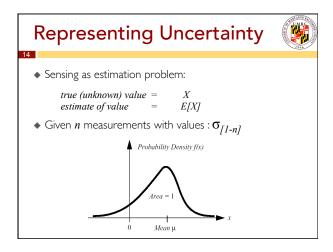
- \blacklozenge Error: the difference between $\ensuremath{\textit{measured}}$ and $\ensuremath{\textit{true}}$ value
- How can we treat sensing as estimation?
- X: random variable representing actual value
 E.g., "distance = 4 meters"
- ◆ E[X]: estimate of the true value
- \blacklozenge Given n sensor readings $(\varrho_1, \varrho_2, ..., \varrho_n)$
- $\blacklozenge E[X] = g(\varrho_1, \varrho_2, \dots, \varrho_n)$

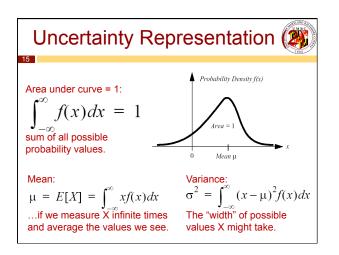
Representation of Uncertainty

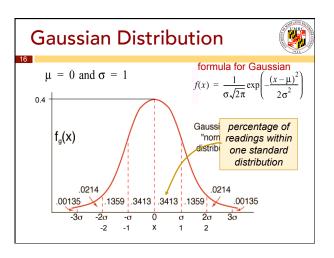
- Specific errors usually unknown, but...
- Errors exist on a spectrum:

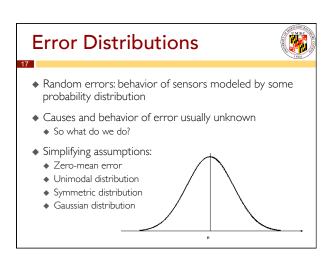
Deterministic **Non-deterministic** (random)

- Some errors are consistent for some circumstances, and can be characterized. These are more deterministic.
- A probability density function gives a probability density f(x) for any x in X.









Examples

- Sonar (ultrasonic) sensor more likely to overestimate distance in real environment
- Is therefore not symmetric
 - Might be better modeled by two modes:
 - Mode for the case that the signal returns directly
 - ${\ensuremath{\,\bullet\,}}$ Mode for the case that the signals returns after reflections
- Stereo vision system might not correlate images
 Results that make no sense at all

Error Propagation

19

- How do we combine a series of uncertain measurements?
 - (Basically the usual case for sensing)
- Propagation of uncertainty (or propagation of error)
- Fuse a sequence of readings into a single value

