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Uncertainty and Error 
Propagation 

Many slides adapted from slides © R. Siegwart, Steve Seitz, J. Tim Oates 
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Last Time
u  RANSAC
u  Structure from Motion

u  Sensor Fusion

u  Sensor Error
u  Probability review
u  Measuring Error
u  Propagating error

This Time
u  Statistics Review
u  Error

u  Error Propagation

u  How a DC motor works

u  Building Motors

u  Choosing groups!

Where We Are 
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u  Sensing is always related to uncertainties.
u  How can uncertainty be represented or quantified?
u  How does it propagate – what’s the uncertainty of a 

function of uncertain values?
u  How do uncertainties combine if different sensor reading 

are fused?
u  What is the merit of all this for robotics?

Uncertainty Representation 
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u  Suppose a robot obtains measurement z 
u  z = vision + edge detection

u  What is P(open|z)?

State Estimation 
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Statistics Review 
u  Expected value of a real-valued random variable �

X with density f(x):
u  E[X] = ∫x f(x)

u  Expected value of a discrete-valued random variable �
X with distribution P(x):
u  E[X] = Σx P(x)
u  Suppose X corresponds to outcome of die roll
u  E[X] = 1 * 1/6 + 2 * 1/6 + 3 * 1/6 + 4 * 1/6 + 5 * 1/6 + 6 * 1/6
u  E[X] = 1/6 * (1 + 2 + 3 + 4 + 5 + 6) = 3.5

u  If random variables X1 and X2 are independent, �
E[X1* X2] = E[X1] * E[X2]
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Statistics Review 
u  Variance: how far a set of numbers is spread out.

u  E[(x - µ)2] = ∫ x2 f(x) - µ2 
u  recall µ is the mean value

u  If the variables are correlated, then we have covariance

u  Covariance
u  Given two random variables, X1 and X2
u  E[(X1 - µX1) (X2 - µX2)]
u  What happens in the following case?

u  When X1 is above its mean, X2 tends to be below its mean
u  When X1 is above its mean, X2 tends to be way above its mean
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Combining Evidence 
u  Suppose our robot obtains another observation z2.

u  How can we integrate this new information?

u  More generally, how can we estimate�
P(x| z1...zn )?
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Recursive Bayesian Updating 
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Markov	assumption:	zn	is	independent	of	z1,...,zn-1	if	we	know	x	
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P(B|A):	
probability of �
B	given	A	

WTF is the eta here? 
What’s going on? 
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u  P(z2|open) = 0.5  P(z2|¬open) = 0.6 

u  P(open|z1)=2/3 
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z2	gives	higher	probability	that	the	door	is	open.	

Second Measurement 

Figure this shit out 
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u  Error: Difference between sensor output and true value

u  Accuracy: unitless measure

Error and Accuracy 

error 

Adapted from © R. Siegwart, ETH Zürich – ASL 

error = m-v m = measured value 
v = true value 
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Precision (But Not Recall) 
u  Precision: Reproducibility of sensor results

u  A distribution of error can be characterized by:
u  Mean error: μ
u  Standard deviation: σ
u  How similar are two outputs from the same test?

u  Same sensor, same environment …

u  Has other meanings in actuation and cognition 

precision  =  
range 
σ 
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u  Error: the difference between measured and true value

u  How can we treat sensing as estimation?

u  X: random variable representing actual value
u  E.g., “distance = 4 meters”

u  E[X]: estimate of the true value

u  Given n sensor readings (ρ1, ρ2, …, ρn) 

u  E[X] = g(ρ1, ρ2, …, ρn)

Statistical Representation of Error 
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Representation of Uncertainty 
u  Specific errors usually unknown, but…

u  Errors exist on a spectrum:

Deterministic       Non-deterministic (random)

u  Some errors are consistent for some circumstances, 
and can be characterized. These are more 
deterministic.

u  A probability density function gives a probability 
density f(x) for any x in X.
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Representing Uncertainty 
u  Sensing as estimation problem:

u  Given n measurements with values : σ[1-n] 

 

true (unknown) value  =   X 
estimate of value  =  E[X]  
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4b 
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Uncertainty Representation (2) 

Mean: 
 
 
…if we measure X infinite times 
and average the values we see. 

Variance: 
 
 
The “width” of possible 
values X might take. 

Area under curve = 1: 
 
 
 
sum of all possible 
probability values. 
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Gaussian Distribution 

0.4 

-1 -2 1 2 

percentage of 
readings within 
one standard 
distribution 

formula for Gaussian 
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u  Random errors: behavior of sensors modeled by some 
probability distribution

u  Causes and behavior of error usually unknown
u  So what do we do?

u  Simplifying assumptions:
u  Zero-mean error
u  Unimodal distribution
u  Symmetric distribution
u  Gaussian distribution

Error Distributions 
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u  Important to remember assumptions are wrong!

    Examples

u  Sonar (ultrasonic) sensor more likely to 
overestimate distance in real environment 

u  Is therefore not symmetric
u  Might be better modeled by two modes:

u  Mode for the case that the signal returns directly
u  Mode for the case that the signals returns after reflections

u  Stereo vision system might not correlate images
u  Results that make no sense at all

Simplifying Assumptions 
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Error Propagation 
u  How do we combine a series of uncertain 

measurements?
u  (Basically the usual case for sensing)

u  Propagation of uncertainty (or propagation of error)

u  Fuse a sequence of readings into a single value
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Error Propagation Law 
u  The effect of variables’ uncertainty on the uncertainty of a 

function that depends on them.

Absolute error Δx

u  Error on some quantity, Δx, is given as

Standard deviation: the positive square root �
of variance,σ2

u  With a probability distribution, can find confidence limits 
u  How sure are we of our estimate?
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The Error Propagation Law 

u  Error propagation in a multiple-input multi-output 
system with n inputs and m outputs.

X 1 

X i 

X n 

System 

…
 

…
 

Y 1 

Y i 

Y m 

…
 

…
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Error Propagation Law 
u  Imagine extracting a line �

based on point measurements �
with uncertainties.

u  The model parameters  ρi �
(length of the perpendicular) �
and θi (its angle to the�
abscissa) describe a �
line uniquely.

u  The question:
u  What is the uncertainty of the extracted line knowing the 

uncertainties of the measurement points that contribute to it?

α

r

xi = (ρi, θi)
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The Error Propagation Law 
u  One-dimensional case of a �

nonlinear error propagation �
problem

u  It can be shown, that �
the output covariance�
matrix CY is given by �
the error propagation law:

u  where
u  CX: covariance matrix representing the input uncertainties
u  CY: covariance matrix representing the propagated uncertainties for the outputs.
u  FX: is the Jacobian matrix defined as:

u  which is the transposed of the gradient of f(X).


