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Localization and Map Building

• Noise and aliasing; odometric position estimation
• To localize or not to localize
• Belief representation
• Map representation
• Probabilistic map-based localization
• Other examples of localization system
• Autonomous map building
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Localization, Where am I?

?

• Odometry, Dead Reckoning
• Localization base on external sensors,

beacons or landmarks
• Probabilistic Map Based Localization

5.1
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Challenges of Localization

• Knowing the absolute position (e.g. GPS) is not sufficient

• Localization in human-scale in relation with environment

• Planing in the Cognition step requires more than only position as input

• Perception and motion plays an important role
 Sensor noise
 Sensor aliasing
 Effector noise
 Odometric position estimation

5.2



Autonomous Mobile Robots, Chapter 5

© R. Siegwart, I. Nourbakhsh

Sensor Noise

• Sensor noise in mainly influenced by environment
e.g. surface, illumination …

• or by the measurement principle itself
e.g. interference between ultrasonic sensors

• Sensor noise drastically reduces the useful information of sensor
readings. The solution is:
 to take multiple reading into account
 employ temporal and/or multi-sensor fusion

5.2.1
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Sensor Aliasing

• In robots, non-uniqueness  of sensors readings is the norm

• Even with multiple sensors, there is a many-to-one mapping from
environmental states to robot’s perceptual inputs

• Therefore the amount of information perceived by the sensors is
generally insufficient to identify the robot’s position from a single
reading
 Robot’s localization is usually based on a series of readings
 Sufficient information is recovered by the robot over time

5.2.2
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Effector Noise: Odometry, Dead Reckoning

• Odometry and dead reckoning:
Position update is based on proprioceptive sensors
 Odometry: wheel sensors only
 Dead reckoning: also heading sensors

• The movement of the robot, sensed with wheel encoders and/or
heading sensors is integrated to the position.
 Pros: Straight forward, easy
 Cons: Errors are integrated -> unbound

• Using additional heading sensors (e.g. gyroscope) might help to reduce
the cumulated errors, but the main problems remain the same.

5.2.3
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Odometry: Error sources

deterministic non-deterministic
(systematic) (non-systematic)

 deterministic errors can be eliminated by proper calibration of the system.
 non-deterministic errors have to be described by error models and will always

leading to uncertain position estimate.
• Major Error Sources:

 Limited resolution during integration (time increments, measurement resolution
…)

 Misalignment of the wheels (deterministic)
 Unequal wheel diameter (deterministic)
 Variation in the contact point of the wheel
 Unequal floor contact (slipping, not planar …)
 …

5.2.3
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Odometry: Classification of Integration Errors

• Range error: integrated path length (distance) of the robots movement
 sum of the wheel movements

• Turn error: similar to range error, but for turns
 difference of the wheel motions

• Drift error: difference in the error of the wheels leads to an error in the
robots angular orientation

Over long periods of time, turn and drift errors
far outweigh range errors!

 Consider moving forward on a straight line along the x axis. The error
in the y-position introduced by a move of d meters will have a component
of dsinΔθ, which can be quite large as the angular error Δθ grows.

5.2.3
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Odometry: The Differential Drive Robot (1)
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Odometry: The Differential Drive Robot (2)

• Kinematics

5.2.4
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Odometry: The Differential Drive Robot (3)

• Error model

5.2.4
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Odometry: Growth of Pose uncertainty for Straight Line Movement

• Note: Errors perpendicular to the direction of movement are growing much faster!

5.2.4
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Odometry: Growth of Pose uncertainty for Movement on a Circle

• Note: Errors ellipse in does not remain perpendicular to the direction of movement!

5.2.4
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Odometry: Calibration of Errors I (Borenstein [5])

• The unidirectional square path experiment

• BILD 1 Borenstein

5.2.4
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Odometry: Calibration of Errors II (Borenstein [5])

• The bi-directional square path experiment

• BILD 2/3 Borenstein

5.2.4
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Odometry: Calibration of Errors III (Borenstein [5])

• The deterministic and
non-deterministic errors

5.2.4
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To localize or not?

• How to navigate between A and B
 navigation without hitting obstacles
 detection of goal location

• Possible by following always the left wall
 However, how to detect that the goal is reached

5.3
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Behavior Based Navigation
5.3
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Model Based Navigation
5.3
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Belief Representation

• a) Continuous map
with single hypothesis

• b) Continuous map
with multiple hypothesis

• d) Discretized map
with probability distribution

• d) Discretized topological
map with probability
distribution

5.4
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Belief Representation: Characteristics

• Continuous
Precision bound by sensor

data
Typically single hypothesis

pose estimate
Lost when diverging (for

single hypothesis)
Compact representation and

typically reasonable in
processing power.

• Discrete
Precision bound by

resolution of discretisation
Typically multiple hypothesis

pose estimate
Never lost (when diverges

converges to another cell)
 Important memory and

processing power needed.
(not the case for topological
maps)

5.4
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Bayesian Approach: A taxonomy of probabilistic models
More general

More specific

discrete
HMMs

continuous
HMMs

Markov Loc

semi-cont.
HMMs

Bayesian
Filters

Bayesian
Programs

Bayesian
Networks

DBNs

Kalman
Filters

MCML POMDPs

MDPs

Particle
Filters

Markov
Chains

St St-1

St St-1 Ot

St St-1 At

St St-1 Ot At

Courtesy of Julien Diard

S: State
O: Observation
A: Action

5.4
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Single-hypothesis Belief – Continuous Line-Map

5.4.1
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Single-hypothesis Belief – Grid and Topological Map

5.4.1
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Grid-base Representation - Multi Hypothesis

• Grid size around 20 cm2.

5.4.2

Courtesy of W.  Burgard
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Map Representation

1. Map precision vs. application

2. Features precision vs. map precision

3. Precision vs. computational complexity

• Continuous Representation

• Decomposition (Discretization)

5.5
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Representation of the Environment

• Environment Representation
 Continuos Metric → x,y,θ
 Discrete Metric → metric grid
 Discrete Topological → topological grid

• Environment Modeling
 Raw sensor data, e.g. laser range data, grayscale images

o large volume of data, low distinctiveness on the level of individual values
o makes use of all acquired information

 Low level features, e.g. line other geometric features
o  medium volume of data, average distinctiveness
o filters out the useful information, still ambiguities

 High level features, e.g. doors, a car, the Eiffel tower
o  low volume of data, high distinctiveness
o filters out the useful information, few/no ambiguities, not enough information

5.5
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Map Representation: Continuous Line-Based

a) Architecture map
b) Representation with set of infinite lines

5.5.1
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Map Representation: Decomposition (1)

• Exact cell decomposition

5.5.2
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Map Representation: Decomposition (1)

• Exact cell decomposition

5.5.2
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Map Representation: Decomposition (2)

• Fixed cell decomposition
 Narrow passages disappear

5.5.2
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Map Representation: Decomposition (3)

• Adaptive cell decomposition

5.5.2
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Map Representation: Decomposition (4)

• Fixed cell decomposition – Example with very small cells

5.5.2

Courtesy of S. Thrun
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Map Representation: Decomposition (5)

• Topological Decomposition

5.5.2
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Map Representation: Decomposition (6)

• Topological Decomposition

node

Connectivity
(arch)

5.5.2
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Map Representation: Decomposition (7)

• Topological Decomposition

~ 400 m

~ 1 km

~ 200 m

~ 50 m

~ 10 m

5.5.2
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State-of-the-Art: Current Challenges in Map Representation

• Real world is dynamic

• Perception is still a major challenge
 Error prone
 Extraction of useful information difficult

• Traversal of open space

• How to build up topology (boundaries of nodes)

• Sensor fusion

• …

5.5.3
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Probabilistic, Map-Based Localization (1)

• Consider a mobile robot moving in a known environment.

• As it start to move, say from a precisely known location, it might keep
track of its location using odometry.

• However, after a certain movement the robot will get very uncertain
about its position.

 update using an observation of its environment.

• observation lead also to an estimate of the robots position which can
than be fused with the odometric estimation to get the best possible
update of the robots actual position.

5.6.1
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Probabilistic, Map-Based Localization (2)

• Action update
 action model ACT

with ot: Encoder Measurement,     st-1: prior belief state
 increases uncertainty

• Perception update
 perception model SEE

 with it: exteroceptive sensor inputs,     s’1: updated belief state
 decreases uncertainty

5.6.1
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• Improving belief state
by moving

5.6.1
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The Five Steps for Map-Based Localization

Observation
on-board sensors

Map
data base

Prediction of
Measurement and 
Position (odometry)

Pe
rc

ep
tio

n

Matching

Estimation
(fusion)

raw sensor data or 
extracted features

pr
ed

ic
te

d 
fe

at
ur

e
ob

se
rv

at
io

ns

position
estimate

matched predictions
and observations

YES

Encoder

1. Prediction based on previous estimate and odometry
2. Observation with on-board sensors
3. Measurement prediction based on prediction and map
4. Matching of observation and map
5. Estimation -> position update (posteriori position)

5.6.1
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Markov  Kalman Filter Localization

• Markov localization
 localization starting from any

unknown position
 recovers from ambiguous

situation.
 However, to update the probability

of all positions within the whole
state space at any time requires a
discrete representation of the
space (grid). The required memory
and calculation power can thus
become very important if a fine
grid is used.

• Kalman filter localization
 tracks the robot and is inherently

very precise and efficient.
 However, if the uncertainty of the

robot becomes to large (e.g.
collision with an object) the
Kalman filter will fail and the
position is definitively lost.

5.6.1
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Markov Localization (1)

• Markov localization uses an
explicit, discrete representation for the probability of
all position in the state space.

• This is usually done by representing the environment by a grid or a
topological graph with a finite number of possible states (positions).

• During each update, the probability for each state (element) of the
entire space is updated.

5.6.2
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Markov Localization (2): Applying probabilty theory to robot localization

• P(A): Probability that A is true.
 e.g. p(rt = l):  probability that the robot r is at position l at time t

• We wish to compute the probability of each indivitual robot position
given actions and sensor measures.

• P(A|B): Conditional probability of A given that we know B.
 e.g. p(rt = l| it): probability that the robot is at position l given the

sensors input it.
• Product rule:

• Bayes rule:

5.6.2
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Markov Localization (3): Applying probability theory to robot localization

• Bayes rule:

 Map from a belief state and a sensor input to a refined belief state (SEE):

 p(l): belief state before perceptual update process
 p(i |l):  probability to get measurement i when being at position l

o consult robots map, identify the probability of a certain sensor reading for each
possible position in the map

 p(i): normalization factor so that sum over all l for L equals 1.

5.6.2
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Markov Localization (4): Applying probability theory to robot localization

• Bayes rule:

 Map from a belief state and a action to new belief state (ACT):

 Summing over all possible ways in which the robot may have reached l.

• Markov assumption: Update only depends on previous state and its
most recent actions and perception.

5.6.2



Autonomous Mobile Robots, Chapter 5

© R. Siegwart, I. Nourbakhsh

Markov Localization: Case Study 1 - Topological Map (1)

• The Dervish Robot
• Topological Localization with Sonar

5.6.2
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Markov Localization: Case Study 1 - Topological Map (2)

• Topological map of office-type environment

5.6.2
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Markov Localization: Case Study 1 - Topological Map (3)

• Update of believe state for position n given the percept-pair i

 p(n¦i): new likelihood for being in position n
 p(n): current believe state
 p(i¦n): probability of seeing i in n (see table)

• No action update !
 However, the robot is moving and therefore we can apply a combination

of action and perception update

 t-i is used instead of t-1 because the topological distance between n’ and
n can very depending on the specific topological map

5.6.2
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Markov Localization: Case Study 1 - Topological Map (4)

• The calculation

is calculated by multiplying the probability of generating perceptual
event i at position n by the probability of having failed to generate
perceptual event s at all nodes between n’ and n.

5.6.2
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Markov Localization: Case Study 1 - Topological Map (5)

• Example calculation
 Assume that the robot has two nonzero belief states

o p(1-2) = 1.0    ;     p(2-3) = 0.2
at that it is facing east with certainty

 State 2-3 will progress potentially to 3, 3-4, and 4.
 State 3 and 3-4 can be eliminated because the likelihood of detecting an open door

is zero.
 The likelihood of reaching state 4 is the product of the initial likelihood p(2-3)= 0.2,

(a) the likelihood of not detecting anything at node 3 and (b) the likelihood of
detecting a hallway on the left and a door on the right at node 4. (for simplicity we
assume that the likelihood of detecting nothing at node 3-4 is 1.0)

 This leads to:
o 0.2 ⋅ [0.6 ⋅ 0.4 + 0.4 ⋅ 0.05] ⋅ 0.7 ⋅ [0.9 ⋅ 0.1] →  p(4) = 0.003.
o Similar calculation for progress from 1-2 →  p(2) = 0.3.

5.6.2

* Note that the probabilities do not sum up to one. For simplicity normalization was avoided in this example 
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Markov Localization: Case Study 2 – Grid Map (1)

• Fine fixed decomposition grid (x, y, θ), 15 cm x 15 cm x 1°
 Action and perception update

• Action update:
 Sum over previous possible positions

and motion model

 Discrete version of eq. 5.22
• Perception update:

 Given perception i, what is the
probability to be a location l

5.6.2

Courtesy of 
W. Burgard
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Markov Localization: Case Study 2 – Grid Map (2)

• The critical challenge is the calculation of p(i¦l)
 The number of possible sensor readings and geometric contexts is extremely large
 p(i¦l) is computed using a model of the robot’s sensor behavior, its position l, and

the local environment metric map around l.
 Assumptions

o Measurement error can be described by a distribution with a mean
o Non-zero chance for any measurement

5.6.2

Courtesy of 
W. Burgard
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Markov Localization: Case Study 2 – Grid Map (3)

• The 1D case
Start

No knowledge at start, thus we have
an uniform probability distribution.

Robot perceives first pillar
Seeing only one pillar, the probability

being at pillar 1, 2 or 3 is equal.

Robot moves
Action model enables to estimate the

new probability distribution based
on the previous one and the motion.

Robot perceives second pillar
Base on all prior knowledge the

probability being at pillar 2 becomes
dominant

5.6.2
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Markov Localization: Case Study 2 – Grid Map (4)

• Example 1: Office Building

5.6.2

Position 3
Position 4

Position 5

Courtesy of 
W. Burgard



Autonomous Mobile Robots, Chapter 5

© R. Siegwart, I. Nourbakhsh

Markov Localization: Case Study 2 – Grid Map (5)

• Example 2: Museum
 Laser scan 1

5.6.2

Courtesy of 
W. Burgard
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Markov Localization: Case Study 2 – Grid Map (6)

• Example 2: Museum
 Laser scan 2

5.6.2

Courtesy of 
W. Burgard
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Markov Localization: Case Study 2 – Grid Map (7)

• Example 2: Museum
 Laser scan 3

5.6.2

Courtesy of 
W. Burgard
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Markov Localization: Case Study 2 – Grid Map (8)

• Example 2: Museum
 Laser scan 13

5.6.2

Courtesy of 
W. Burgard
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Markov Localization: Case Study 2 – Grid Map (9)

• Example 2: Museum
 Laser scan 21

5.6.2

Courtesy of 
W. Burgard
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Markov Localization: Case Study 2 – Grid Map (10)

• Fine fixed decomposition grids result in a huge state space
 Very important processing power needed
 Large memory requirement

• Reducing complexity
 Various approached have been proposed for reducing complexity
 The main goal is to reduce the number of states that are updated in each

step
• Randomized Sampling / Particle Filter

 Approximated belief state by representing only a ‘representative’ subset
of all states (possible locations)

 E.g update only 10% of all possible locations
 The sampling process is typically weighted, e.g. put more samples

around the local peaks in the probability density function
 However, you have to ensure some less likely locations are still tracked,

otherwise the robot might get lost

5.6.2



Autonomous Mobile Robots, Chapter 5

© R. Siegwart, I. Nourbakhsh

Kalman Filter Localization

5.6.3
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Introduction to Kalman Filter (1)

• Two measurements

• Weighted least-squares

• Finding minimum error

• After some calculation and rearrangements

5.6.3

σσ22 =  = σσ11
22σσ22

22/(/(σσ11
22 +  + σσ22

22))



Autonomous Mobile Robots, Chapter 5

© R. Siegwart, I. Nourbakhsh

Introduction to Kalman Filter (2)

• In Kalman Filter notation

5.6.3
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Introduction to Kalman Filter (3)

• Dynamic Prediction (robot moving)

u = velocity
w = noise

• Motion

• Combining fusion and dynamic prediction

5.6.3
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Kalman Filter for Mobile Robot Localization

Robot Position Prediction

• In a first step, the robots position at time step k+1 is predicted based on
its old location (time step k) and its movement due to the control input
u(k):
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f: Odometry function

5.6.3
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Kalman Filter for Mobile Robot Localization

Robot Position Prediction: Example
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Kalman Filter for Mobile Robot Localization

Observation

• The second step it to obtain the observation Z(k+1) (measurements)  from
the robot’s sensors at the new location at time k+1

• The observation usually consists of a set n0 of single observations zj(k+1)
extracted from the different sensors signals. It can represent raw data
scans as well as features like lines, doors or any kind of landmarks.

• The parameters of the targets are usually observed in the sensor frame
{S}.
 Therefore the observations have to be transformed to the world frame {W}

or
 the measurement prediction have to be transformed to the sensor frame {S}.
 This transformation is specified in the function hi (seen later).

5.6.3
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Kalman Filter for Mobile Robot Localization

Observation:  Example
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Kalman Filter for Mobile Robot Localization

Measurement Prediction

• In the next step we use the predicted robot position
and the map M(k) to generate multiple predicted observations zt.

• They have to be transformed into the sensor frame

• We can now define the measurement prediction as the set containing
all ni predicted observations

• The function hi is mainly the coordinate transformation between the
world frame and the sensor frame

5.6.3
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Kalman Filter for Mobile Robot Localization

Measurement Prediction: Example

• For prediction, only the walls that are in
the field of view of the robot are selected.

• This is done by linking the individual
lines to the nodes of the path

5.6.3
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Kalman Filter for Mobile Robot Localization

Measurement Prediction: Example

• The generated measurement predictions have to be transformed to the
robot frame {R}

• According to the figure in previous slide the transformation is given by

and its Jacobian by

5.6.3
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Kalman Filter for Mobile Robot Localization

Matching

• Assignment from observations zj(k+1) (gained by the sensors) to the targets zt (stored in
the map)

• For each measurement prediction for which an corresponding observation is found we
calculate the innovation:

and its innovation covariance found by applying the error propagation law:

• The validity of the correspondence between measurement and prediction can e.g. be
evaluated through the Mahalanobis distance:

5.6.3
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Kalman Filter for Mobile Robot Localization

Matching: Example
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Kalman Filter for Mobile Robot Localization

Matching: Example

• To find correspondence (pairs) of predicted and observed features we
use the Mahalanobis distance

with

5.6.3
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Kalman Filter for Mobile Robot Localization

Estimation: Applying the Kalman Filter

• Kalman filter gain:

• Update of robot’s position estimate:

• The associate variance

5.6.3
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Kalman Filter for Mobile Robot Localization

Estimation: 1D Case

• For the one-dimensional case with                                         we can
show that the estimation corresponds to the Kalman filter for one-
dimension presented earlier.

5.6.3
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Kalman Filter for Mobile Robot Localization

Estimation: Example

• Kalman filter estimation of the new robot
position              :
 By fusing the prediction of robot position

(magenta) with the innovation gained by
the measurements (green) we get the
updated estimate of the robot position
(red)

)(ˆ kkp

5.6.3
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Autonomous Indoor Navigation (Pygmalion EPFL)

 very robust on-the-fly localization
 one of the first systems with probabilistic sensor fusion
 47 steps,78 meter length, realistic office environment,
 conducted 16 times > 1km overall distance
 partially difficult surfaces (laser), partially few vertical edges (vision)

5.6.3
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Other Localization Methods (not probabilistic)

Localization Baseon Artificial Landmarks
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Other Localization Methods (not probabilistic)

Localization Base on Artificial Landmarks
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Other Localization Methods (not probabilistic)

Positioning Beacon Systems: Triangulation
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Other Localization Methods (not probabilistic)

Positioning Beacon Systems: Triangulation
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Other Localization Methods (not probabilistic)

Positioning Beacon Systems: Docking
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Other Localization Methods (not probabilistic)

Positioning Beacon Systems: Bar-Code
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Other Localization Methods (not probabilistic)

Positioning Beacon Systems
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Autonomous Map Building

Starting from an arbitrary initial point,
a mobile robot should be able to autonomously explore the

environment with its on board sensors,
gain knowledge about it,

interpret the scene,
build an appropriate map

and localize itself relative to this map.

SLAM
The Simultaneous Localization and Mapping Problem

5.8
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Map Building:
How to Establish a Map

1. By Hand

2. Automatically: Map Building

The robot learns its environment

Motivation:
- by hand: hard and costly
- dynamically changing environment
- different look due to different perception

3. Basic Requirements of a Map:
 a way to incorporate newly sensed

information into the existing world model
 information and procedures for estimating

the robot’s position
 information to do path planning and other

navigation task (e.g. obstacle avoidance)

• Measure of Quality of a map
 topological correctness
 metrical correctness

• But: Most environments are a mixture of
predictable and unpredictable features
→ hybrid approach
model-based vs. behaviour-based

123.5

predictability

5.8
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Map Building:
The Problems

1. Map Maintaining: Keeping track of
changes in the environment

e.g. disappearing
cupboard

- e.g. measure of belief of each
environment feature

2. Representation and
Reduction of Uncertainty

position of robot -> position of wall

position of wall -> position of robot

• probability densities for feature positions
• additional exploration strategies

?

5.8
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General Map Building Schematics
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Map Representation

• M is a set n of probabilistic feature locations
• Each feature is represented by the covariance matrix Σt and an

associated credibility factor ct

• ct is between 0 and 1 and quantifies the belief in the existence of the
feature in the environment

• a and b define the learning and forgetting rate and ns and nu are the
number of matched and unobserved predictions up to time k,
respectively.

5.8.1
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Autonomous Map Building
Stochastic Map Technique

• Stacked system state vector:

• State covariance matrix:

5.8.1
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Autonomous Map Building
Example of Feature Based Mapping (EPFL)
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Cyclic Environments

• Small local error accumulate to arbitrary large global errors!
• This is usually irrelevant for navigation
• However, when closing loops, global error does matter

5.8.2

Courtesy of Sebastian Thrun
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Dynamic Environments

• Dynamical changes require continuous mapping

• If extraction of high-level features would be
possible, the mapping in dynamic
environments would become
significantly more straightforward.
 e.g. difference between human and wall
 Environment modeling is a key factor

for robustness
?

5.8.2
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Map Building:
Exploration and Graph Construction

1. Exploration

- provides correct topology
- must recognize already visited location
- backtracking for unexplored openings

2. Graph Construction

Where to put the nodes?

• Topology-based: at distinctive locations

• Metric-based: where features disappear or
get visible

explore

on stack

already

examined

5.8


