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Motion Control (wheeled robots)

• Requirements for Motion Control
 Kinematic / dynamic model of the robot
 Model of the interaction between the

wheel and the ground
 Definition of required motion ->

speed control, position control
 Control law that satisfies the requirements
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Introduction: Mobile Robot Kinematics

• Aim
 Description of mechanical behavior of the robot for

design and control
 Similar to robot manipulator kinematics
 However, mobile robots can move unbound with respect to its

environment
o there is no direct way to measure the robot’s position
o Position must be integrated over time
o Leads to inaccuracies of the position (motion) estimate

-> the number 1 challenge in mobile robotics

 Understanding mobile robot motion starts with understanding wheel
constraints placed on the robots mobility
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• Representing robot within an arbitrary initial frame
 Initial frame:
 Robot frame:

 Robot position:

 Mapping between the two frames

Representing Robot Position
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Mapping Between Frames: Details
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Example

3.2.1
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Introduction: Kinematics Model
• Goal:

 establish the robot speed                       as a function of the wheel speeds    ,
steering angles     , steering speeds     and the geometric parameters of the
robot (configuration coordinates).
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Introduction: Kinematics Model
• Goal:

 establish the robot speed                       as a function of the wheel speeds    ,
steering angles     , steering speeds     and the geometric parameters of the
robot (configuration coordinates).

 Forward kinematics  - “If I do this, what will happen?”

 Inverse kinematics - “If I want this to happen, what should I do?”
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Forward Kinematic Models - Differential Drive

• The robot
 Two wheels - radius r
 Point P centered between wheels
 Each wheel is distance l from P
 Wheels have rotational velocity ϕ1 and ϕ2

• Forward kinematic model

• Use  ξξRR = R( = R(θθ) ) ξξII  so so ξξII = R = R-1-1((θθ) ) ξξRR
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Differential Drive (cont.)

• Use  ξξRR = R( = R(θθ) ) ξξII  so so ξξII = R = R-1-1((θθ) ) ξξRR
• Compute how wheel speeds influence ξξRR
• Translate to ξξII via RR-1-1((θθ))

• Contribution to translation along XR
• If one wheel spins and the other remains still P will move at half the

translational velocity of the wheel: 1/2rϕ1 or 1/2rϕ2
• Sum these components to account for both wheels spinning

 XR = 1/2rϕ1 + 1/2rϕ2

• Suppose they spin in opposite directions, same direction
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Differential Drive (cont.)

• Wheel rotation never contributes to YR.  Why?
• What about θ?

 Wheel 1 spin makes robot rotate counterclockwise
 Pivot around wheel 2 (left wheel)
 Translational velocity is rϕ
 Traces circle with radius 2l
 Rotational velocity 2π * rϕ / (2π * 2l) = rϕ / 2l
 Wheel 2 spin makes robot rotate clockwise
 Sum to get net effect: θ = (rϕ1 - rϕ2) / 2l
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Differential Drive: The Punch Line

ξξII = R = R-1-1((θθ) ) ξξRR =  = RR-1-1((θθ))
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Wheel Kinematic Constraints: Assumptions

• Movement on a horizontal plane
• Point contact of the wheels
• Wheels not deformable
• Pure rolling
• No slipping, skidding or sliding
• No friction for rotation around contact point
• Steering axes orthogonal to the surface
• Wheels connected by rigid frame (chassis)
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Wheel Kinematic Constraints:

Fixed Standard Wheel

3.2.3

Rolling constraint:Rolling constraint: all motion all motion
alongalong  wheel plane (in the directionwheel plane (in the direction
of v) must be accompanied byof v) must be accompanied by  thethe
same amount of wheel spin so thatsame amount of wheel spin so that
there is pure rolling at contact pointthere is pure rolling at contact point
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Wheel Kinematic Constraints:

Fixed Standard Wheel

3.2.3

Sliding constraint:Sliding constraint: there can be there can be
no motion orthogonal to wheelno motion orthogonal to wheel
plane (perpendicular to v),plane (perpendicular to v),
otherwise wheel skidsotherwise wheel skids
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Wheel Kinematic Constraints:

Fixed Standard Wheel: Rolling Constraint

3.2.3
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Wheel Kinematic Constraints:

Fixed Standard Wheel: Sliding Constraint

3.2.3
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Example

• Suppose that the wheel A is in position such that
•α = 0 and β = 0
• This would place the contact point of the wheel on XI with the plane of

the wheel oriented parallel to YI. If θ = 0, then the sliding constraint
reduces to:

3.2.3
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Not Omnidirectional: Why?

3.2.3

Can constraints be satisfied for ANY Can constraints be satisfied for ANY ξξII??
..
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Wheel Kinematic Constraints:

Steered Standard Wheel

3.2.3

Same as fixed wheel, but Same as fixed wheel, but ββ is changes is changes
over time.  Instantaneously, it is fixed.over time.  Instantaneously, it is fixed.
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Wheel Kinematic Constraints:

Castor Wheel

3.2.3

•• Wheel contact point at BWheel contact point at B
•• Steering at ASteering at A
•• Rigid connector ABRigid connector AB
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Wheel Kinematic Constraints:

Castor Wheel: Omnidirectional (why?)

3.2.3

[[coscos((αα +  + ββ)   sin()   sin(αα +  + ββ) )     d + d + lsinlsinββ]R(]R(θθ))ξξII + d + dββ = 0 = 0
.. ..
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Wheel Kinematic Constraints:

Swedish Wheel

3.2.3
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Wheel Kinematic Constraints:

Spherical  Wheel

3.2.3
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Robot Kinematic Constraints

• Given a robot with M wheels
 each wheel imposes zero or more constraints on the robot motion
 only fixed and steerable standard wheels impose constraints

• What is the maneuverability of a robot considering a combination of
different wheels?

• Suppose we have a total of N=Nf + Ns standard wheels
 We can develop the equations for the constraints in matrix forms:
 Rolling

 Lateral movement
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Example: Differential Drive Robot

• Presented on blackboard

3.2.5
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Example: Omnidirectional Robot

• Presented on blackboard

3.2.5
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Mobile Robot Maneuverability

• The maneuverability of a mobile robot is the combination
 of the mobility available based on the sliding constraints
 plus additional freedom contributed by the steering

• Three wheels is sufficient for static stability
 additional wheels need to be synchronized
 this is also the case for some arrangements with three wheels

• It can be derived using the equation seen before
 Degree of mobility
 Degree of steerability
 Robots maneuverability
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Mobile Robot Maneuverability: Degree of Mobility

• To avoid any lateral slip the motion vector            has to satisfy the
following constraints:

• Mathematically:
              must belong to the null space of the projection matrix
 Null space of             is the space N such that for any vector n in N

 Geometrically this can be shown by the Instantaneous Center of Rotation
(ICR)
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Mobile Robot Maneuverability: Instantaneous Center of Rotation

• Ackermann Steering Bicycle

3.3.1



Autonomous Mobile Robots, Chapter 3

© R. Siegwart, I. Nourbakhsh

Mobile Robot Maneuverability: More on Degree of Mobility

• Robot chassis kinematics is a function of the set of independent
constraints
 the greater the rank of ,            the more constrained is the mobility

• Mathematically

o no standard wheels
o all direction constrained

• Examples:
 Unicycle: One single fixed standard wheel
 Differential drive: Two fixed standard wheels

o wheels on same axle
o wheels on different axle
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Mobile Robot Maneuverability: Degree of Steerability

• Indirect degree of motion

 The particular orientation at any instant imposes a kinematic constraint
 However, the ability to change that orientation can lead additional

degree of maneuverability
• Range of      :

• Examples:
 one steered wheel: Tricycle
 two steered wheels: No fixed standard wheel
 car (Ackermann steering): Nf = 2, Ns=2        -> common axle
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Mobile Robot Maneuverability: Robot Maneuverability

• Degree of Maneuverability

 Two robots with same        are not necessary equal
 Example: Differential drive and Tricycle (next slide)

 For any robot with              the ICR is always constrained
to lie on a line

 For any robot with              the ICR is not constrained an
can be set to any point on the plane

• The Synchro Drive example:
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Mobile Robot Maneuverability: Wheel Configurations

• Differential Drive Tricycle

3.3.3
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Five Basic Types of Three-Wheel Configurations

3.3.3
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Synchro Drive
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Mobile Robot Workspace: Degrees of Freedom

• Maneuverability is equivalent to the vehicle’s degree of freedom
(DOF)

• But what is the degree of vehicle’s freedom in its environment?
 Car example

• Workspace
 how the vehicle is able to move between different configuration in its

workspace?
• The robot’s independently achievable velocities

 = differentiable degrees of freedom (DDOF) =
 Bicycle:                                    DDOF = 1;   DOF=3
 Omni Drive:                                     DDOF=3;   DOF=3
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Mobile Robot Workspace: Degrees of Freedom, Holonomy

• DOF degrees of freedom:
 Robots ability to achieve various poses

• DDOF differentiable degrees of freedom:
 Robots ability to achieve various path

• Holonomic Robots
 A holonomic kinematic constraint can be expressed a an explicit function

of position variables only
 A non-holonomic constraint requires a different relationship, such as the

derivative of a position variable
 Fixed and steered standard wheels impose non-holonomic constraints

DOFDDOF m !! "
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Mobile Robot Workspace:

Examples of Holonomic Robots

3.4.2
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Path / Trajectory Considerations: Omnidirectional Drive

3.4.3
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Path / Trajectory Considerations: Two-Steer

3.4.3



Autonomous Mobile Robots, Chapter 3

© R. Siegwart, I. Nourbakhsh

Beyond Basic Kinematics

3.5
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Motion Control (kinematic control)

• The objective of a kinematic controller is to follow a trajectory
described by its position and/or velocity profiles as function of time.

• Motion control is not straight forward because mobile robots are non-
holonomic systems.

• However, it has been studied by various research groups and some
adequate solutions for (kinematic) motion control of a mobile robot
system are available.

• Most controllers are not considering the dynamics of the system

3.6
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Motion Control: Open Loop Control
• trajectory (path) divided in motion segments of

clearly defined shape:
 straight lines and segments of a circle.

• control problem:
 pre-compute a smooth trajectory

based on line and circle segments
• Disadvantages:

 It is not at all an easy task to pre-compute
a feasible trajectory

 limitations and constraints of the robots
velocities and accelerations

 does not adapt or correct the trajectory if dynamical
changes of the environment occur.

 The resulting trajectories are usually not smooth
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Motion Control: Feedback Control, Problem Statement

• Find a control matrix K, if
exists

       with kij=k(t,e)
• such that the control of v(t)

and ω(t)

• drives the error e to zero.
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Motion Control:

Kinematic Position Control

The kinematic of a differential drive mobile
robot described in the initial frame {xI, yI, θ
} is given by,

where  and  are the linear velocities in the
direction of the xI and yI of the initial frame.
Let α denote the angle between the xR axis
of the robots reference frame and the vector
connecting the center of the axle of the
wheels with the final position.
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Kinematic Position Control: Coordinates Transformation
Coordinates transformation into polar coordinates
with its origin at goal position:

System description, in the new polar coordinates

3.6.2
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Kinematic Position Control: Remarks

• The coordinates transformation is not defined at x = y = 0; as in such
a point the determinant of the Jacobian matrix of the transformation
is not defined, i.e. it is unbounded

• For                the forward direction of the robot points toward
the goal, for               it is the backward direction.

• By properly defining the forward direction of the robot at its initial
configuration, it is always possible to have            at t=0. However
this does not mean that α remains in I1 for all time t.

3.6.2
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Kinematic Position Control: The Control Law
• It can be shown, that with

the feedback controlled system

• will drive the robot to
• The control signal v has always constant sign,

 the direction of movement is kept positive or negative during movement
 parking maneuver is performed always in the most natural way and

without ever inverting its motion.
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Kinematic Position Control: Resulting Path

3.6.2
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Kinematic Position Control: Stability Issue
• It can further be shown, that the closed loop control system is locally

exponentially stable if

• Proof:
for small x −> cosx = 1, sinx = x

and the characteristic polynomial of the matrix A of all roots

have negative real parts.
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Mobile Robot Kinematics: Non-Holonomic Systems

• Non-holonomic systems
 differential equations are not integrable to the final position.
 the measure of the traveled distance of each wheel is not sufficient to

calculate the final position of the robot. One has also to know how this
movement was executed as a function of time.

s1L s1R

s2L

s2R
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s1
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s1=s2 ; s1R=s2R ; s1L=s2L

but: x1 = x2 ; y1 = y2
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Non-Holonomic Systems: Mathematical Interpretation
• A mobile robot is running along a trajectory s(t).

At every instant of the movement its velocity v(t) is:

• Function v(t) is said to be integrable (holonomic) if there exists a trajectory function s(t)
that can be described by the values x, y, and θ only.

• This is the case if

• With s = s(x,y,θ) we get for ds
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Non-Holonomic Systems: The Mobile Robot Example

• In the case of a mobile robot where

• and by comparing the equation above with

• we find

• Condition for an integrable (holonomic) function:

 the second (-sinθ=0) and third (cosθ=0) term in equation do not hold!
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