Locomotion Concepts

- Concepts
- Legged Locomotion
- Wheeled Locomotion

Locomotion Concepts: Principles Found in Nature

Type of motion	Resistance to motion	Basic kinematics of motion
Flow in a Channel	Hydrodynamic forces	Eddies
Crawl	Friction forces	
Sliding	Friction forces	Transverse vibration
Running	Loss of kinetic energy	Oscillatory movement of a multi-link pendulum
Jumping 2	Loss of kinetic energy	Oscillatory movement of a multi-link pendulum
Walking	Gravitational forces	Rolling of a polygon (see figure 2.2)

Locomotion Concepts

- Concepts found in nature
 difficult to imitate technically Why?
- Most technical systems use wheels or caterpillars
- Rolling is most efficient, but not found in nature
 Nature never invented the wheel !
- However, the movement of a walking biped is close to rolling

Walking of a Biped

Biped walking mechanism
 not to far from real rolling.

- rolling of a polygon with side length equal to the length of the step.
- the smaller the step gets, the more the polygon tends to a circle (wheel).
- However, fully rotating joint was not developed in nature.

2.1

Walking or rolling?

- number of actuators
- structural complexity
- control expense
- energy efficient
 - terrain (flat ground, soft ground, climbing..)
- movement of the involved masses
 - walking / running includes up and down movement of COG
 some extra losses

RoboTrac, a hybrid wheel-leg vehicle

Characterization of locomotion concept

- Locomotion
 - > physical interaction between the vehicle and its environment.
- Locomotion is concerned with *interaction forces*, and the *mechanisms* and *actuators* that generate them.
- The most important issues in locomotion are:
- stability
 - > number of contact points
 - > center of gravity
 - static/dynamic stabilization
 - inclination of terrain

- characteristics of contact
 - contact point or contact area
 - angle of contact
 - > friction
- type of environment
 - > structure
 - medium (water, air, soft or hard ground)

Mobile Robots with legs (walking machines)

- The fewer legs the more complicated becomes locomotion
 - > stability, at least three legs are required for static stability
- During walking some legs are lifted
 - > thus loosing stability?
- For static walking at least 6 legs are required
 - babies have to learn for quite a while until they are able to stand or even walk on their two legs.

Number of Joints of Each Leg (DOF: degrees of freedom)

- A minimum of two DOF is required to move a leg forward
 > a lift and a swing motion.
- Three DOF for each leg in most cases
- Fourth DOF for the ankle joint
 - > might improve walking
 - however, additional joint (DOF) increase the complexity of the design and especially of the locomotion control.

Examples of Legs with 3 DOF

The number of possible gaits

• The gait is characterized as the sequence of lift and release events of the individual legs

 \succ it depends on the number of legs.

 \succ the number of possible events N for a walking machine with k legs is:

$$N = (2k - 1)!$$

• For a biped walker (k=2) the number of possible events N is:

$$N = (2k - 1)! = 3! = 3 \cdot 2 \cdot 1 = 6$$

The 6 different events are: lift right leg / lift left leg / release right leg / release left leg / lift both legs together / release both legs together

• For a robot with 6 legs (hexapod) N is already

$$N = 11! = 39'916'800$$

Most Obvious Gaits with 4 legs

Changeover Walking

Galloping

Most Obvious Gait with 6 legs (static)

2.2.2

Examples of Walking Machines

- No industrial applications up to date but a popular research field
- For an excellent overview please s

http://www.uwe.ac.uk/clawar/

The Hopping Machine

Humanoid Robots

- P2 from Honda, Japan
 - Maximum Speed: 2 km/h
 Autonomy: 15 min
 Weight: 210 kg
 Height: 1.82 m
 Leg DOF: 2*6
 Arm DOF: 2*7

Bipedal Robots

• Leg Laboratory from MIT

Spring Flamingo the bipedal running machine

"Troody" Dinosaur like robot

"M2" Humanoid robot

more infos : http://www.ai.mit.edu/projects/leglab/

Humanoid Robots

- Wabian build at Waseda University in Japan
 - Weight: 107 kg
 Height: 1.66 m
 DOF in total: 43

Walking with Three Legs

Walking Robots with Four Legs (Quadruped)

• Artificial Dog Aibo from Sony, Japan

CMPack '03 vs. Yellow Jackets

American Open 2003

Walking Robots with Four Legs (Quadruped)

• Titan VIII, a quadruped robot, Tokyo Institute of Technology

Weight: 19 kg
 Height: 0.25 m
 DOF: 4*3

Walking Robots with Four Legs (Quadruped)

Centre for Intelligent Machines

Ambulatory Robotics Lab

McGill University

Walking Robots with Six Legs (Hexapod)

• Most popular because static stable walking possible

• The human guided hexapod of Ohio State University

- > Maximum Speed: 2.3 m/s
- *▶* Weight: 3.2 t
- > Height: 3 m
- *▶ Length:* 5.2 *m*
- > No. of legs: 6
- > DOF in total: 6*3

Walking Robots with Six Legs (Hexapod)

- Lauron II, University of Karlsruhe
 - > Maximum Speed: 0.5 m/s
 - > Weight: 6 kg
 - ➢ Height: 0.3 m
 - *▶ Length*: 0.7 *m*
 - > No. of legs: 6
 - > DOF in total: 6*3
 - > Power Consumption: 10 W

Mobile Robots with Wheels

- Wheels are the most appropriate solution for most applications
- Three wheels are sufficient and to guarantee stability
- With more than three wheels a flexible suspension is required
 Why?
- Selection of wheels depends on the application

The Four Basic Wheels Types

- a) Standard wheel: Two degrees of freedom; rotation around the (motorized) wheel axle and the contact point
- b) Castor wheel: Three degrees of freedom; rotation around the wheel axle, the contact point and the castor axle

The Four Basic Wheels Types

- c) Swedish wheel: Three degrees of freedom; rotation around the (motorized) wheel axle, around the rollers and around the contact point
- d) Ball or spherical wheel: Suspension technically not solved

Characteristics of Wheeled Robots and Vehicles

- Stability of a vehicle is be guaranteed with 3 wheels
 - center of gravity is within the triangle with is formed by the ground contact point of the wheels.
- Stability is improved by 4 and more wheel
 - however, these arrangements are hyperstatic and require a flexible suspension system.
- Bigger wheels allow to overcome higher obstacles
 - *but they require higher torque or reductions in the gear box.*
- Most arrangements are non-holonomic (see chapter 3)
 - > require high control effort
- Combining actuation and steering on one wheel makes the design complex and adds additional errors for odometry.

Different Arrangements of Wheels I

• Two wheels

• Three wheels

Omnidirectional Drive

Different Arrangements of Wheels II

• Four wheels

• Six wheels

Cye, a Two Wheel Differential Drive Robot

• Cye, a commercially available domestic robot that can vacuum and make deliveries in the home, is built by Probotics, Inc.

Synchro Drive

- All wheels are actuated synchronously by one motor
 - > defines the speed of the vehicle
- All wheels steered synchronously by a second motor
 - > sets the heading of the vehicle
- The orientation in space of the robot frame will always remain the same
 - It is therefore not possible to control the orientation of the robot frame.

Tribolo, Omnidirectional Drive with 3 Spheric Wheels

Uranus, CMU: Omnidirectional Drive with 4 Wheels

• Movement in the plane has 3 DOF

- thus only three wheels can be independently controlled
- It might be better to arrange the swedish wheels in a triangle

2.3.2

Caterpillar

• The NANOKHOD II, developed by von Hoerner & Sulger GmbH and Max Planck Institute, Mainz for European Space Agency (ESA) will probably go to Mars

Stepping / Walking with Wheels

 SpaceCat, and microrover for Mars, developed by Mecanex Sa and EPFL for the European Space Agency (ESA)

	1
--	---

SHRIMP, a Mobile Robot with Excellent Climbing Abilities

Objective

- Passive locomotion concept for rough terrain
- Results: The Shrimp
 - \geq 6 wheels
 - o one fixed wheel in the rear
 - two bogies on each side
 - o one front wheel with spring suspension
 - \succ robot sizing around 60 cm in length and 20 cm in height
 - highly stable in rough terrain
 - > overcomes obstacles up to 2 times its wheel diameter

The SHRIMP Adapts Optimally to Rough Terrain

2.3.2

The Personal Rover

