Motors and Motor Control

- Braitenberg's Vehicles
- Circuits 101
 - Some things the CMPEs know and the CMSCs are afraid to ask
- Physics 101
 - Some things we all knew at one time but forgot
- Motors 101
 - Pre-reqs Circuits 101 and Physics 101
 - Motors 101 Lab
- Motors 201
 - Servos and servo control

Braitenberg's Vehicles

Alive!

- One sensor
- One drive wheel
- Excitatory connection
- Behavior?

Variants

- More wheels
- More sensors
- Crossed connections

Fear and Aggression - Excitatory Links

Love - Inhibitory Links

More Complexity: What does this one do?

Special Tastes

- Non-linear relationship between intensity and velocity
- Behaviors?

Exercise

- Design a vehicle that behaves as shown above
- How many sensors and wheels?
- Connections and activation profile?

Circuits 101

Circuits 101

Circuits 101

Microcontrollers

Microcontrollers

Transistors

- Often used as switches
- Small BE current controls much larger CE current

Physics 101 - Magnets

- Two poles North and South
 - Like poles repel
 - Opposite poles attract
- Magnetic field
 - Flux lines
 - Directed from North to South

Physics 101 - Lorentz Force

- Force acts on wire carrying current in magnetic field
- Direction of force from right-hand rule
 - Curl fingers from direction of current flow (+ to -) in direction of flux flow (N to S)
 - Check thumb, it points in direction of force on wire

Motors 101 - DC Motors

- What forces are acting on wire?
- How do forces change when wire rotates?

Motors 101 - Commutation

Motors 101 Lab

- Build your own motor!!!
- Form groups of 3
- Read handout and build motor
- Let me know when it's working
- Experiments
 - Flip magnet
 - Flip coil
- Questions
 - How/why does motor work?
 - Which side of the magnet is north?
 - What if you sand both sides of coil?

Motors 101

Motors 201 - Speed Control

Why not reduce voltage with a variable resistor?

- Turn power on and off quickly
 - Period
 - Pulse width
 - Pulse width / Period = Duty cycle
- Longer pulses lead to faster rotation
 - Try it with your lab motors

Motors 201 - Direction Control

- H-bridge
- Four switches
- Easily change polarity on motor
- Reverse direction
- Used in conjunction with PWM

Motors 201 - Direction Control

- H-bridge
- Four switches
- Easily change polarity on motor
- Reverse direction
- Used in conjunction
 with PWM

Motors 201 - Torque

- Torque
 - Rotational force
 - Linear force times distance
 - Units: oz-in
 - Force required to lift 1oz using 1in radius pulley
- DC Motors
 - High angular velocity
 - Low torque
 - Use gears to flip that relationship so robot can move larger masses more slowly
- DC gearhead motors

Motors 201 - Motor Specs

- DC motor + gears + control circuitry
- Constrained motion typically 180 degrees
- Set desired rotational position
- Active control to maintain that position
- Applications
 - Robotics arms, legs
 - RC Airplanes
 - Many others

Motors 201 - Servos

- DC motor
- Gears (torque)
- Circuit
- Potentiometer
- Control cable
- Hard stop

Motors 201 - Servo Position Control

- Pulse width modulation (for a different purpose)
- 20ms period, duty cycle indicates position