Autonomous Mobile Robots

ETH Master Course: 151-0854-00L

Autonomous MobileRobots

Lecture: Monday 14.15 - 16.00, HG D 3.2 Exercises: Monday 16.15 - 18.00, HG K32 (VisDome)

Roland Siegwart

Margarita Chli

Martin Rufli

AMR 2nd Edition Available Now!

- Revised and extended
 - 150+ pages heavier
 - Perception treated more thoroughly
- Accompanies this course

3 Today's Lecture

Part 1

- Introduction to & motivation for studying mobile robotics
 - What precisely is mobile robotics and where does it come from
 - Examples of milestone developments
 - Snapshot of state-of-the-art systems

Part 2

- Introduction to basic terminology and concepts behind robotics
 - Robot kinematics
 - Environment representation and modeling
 - Localization and map-building
 - Planning and control
 - Each of these topics will be treated more in-depth throughout the course
- Organizational
 - Format of lectures and exercises
 - Testat and final exam

Robotics: Origin and Meaning

- Robot etymology
 - Robota: Czech for useful (and forced) forms of labor
 - Coined by Karel Čapek in his 1921 play "Rossums Universal Robots"
 - Represents today's understanding of an android
- By this definition, the field of robotics is ancient
 - Clepsydra: water clocks of ancient greece
 - Windmills
 - Steam engine

c wikipedia.org


c deutsches-museum.de

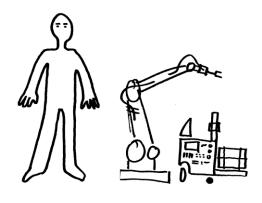
c wikipedia.org


5 Robotics: Modern Developments (1950 – 1990)

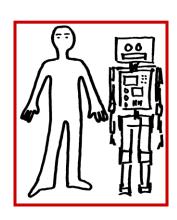
- Milestones in stationary robotics (industry)
 - Pick and place Unimates, 1956
 - Stanford arm, 6 dof, 1969
 - ABB and KUKA industrial arms, 1973
- Milestones in mobile robotics
 - Shakey the robot, 1966
 - NASA Viking program, 1975
 - Brooks "subsumption architecture", 1986

6 Robotics: Modern Developments (1950 – 1990)

Shakey the robot


7 Robotics: Modern Developments (1950 – 1990)

Brooks' subsumption architecture



8 Trend: Robots are Getting Closer

Technical systems can be characterized by the increasing physical and psychological closeness and interaction between man and machine

Service and Personal Robots

Cyborgs

Mobile Robotics: Case Studies from the Last Two Decades

- Space Rovers
 - NASA and ESA Mars programs
 - Key issues: mobility in rough terrain, time delay, temperatures
- Autonomous Robotic Cars
 - DARPA grand and urban challenges
 - Autonomous Google car
 - Key issues: dynamic environments, safety
- Flying Robots
 - sFly
 - Key issues: limited computation power and payload
- Personal Robots
 - Humanoids: ASIMO
 - Willow Garage PR2
 - Key issues: safety, human-friendliness

10 NASA: Mars Exploration Rover Mission

- Mission overview
 - Two rovers: Spirit and Oppurtunity to survey Martian surface & geology
 - Original mission duration was set to 90 sol
 - Total cost of close to 1 Billion US\$

Communication

- X band radio, ca. 20 minutes delay (two ways)
- Thus, remote real-time operation is not feasible

Spirit

Autonomous Systems

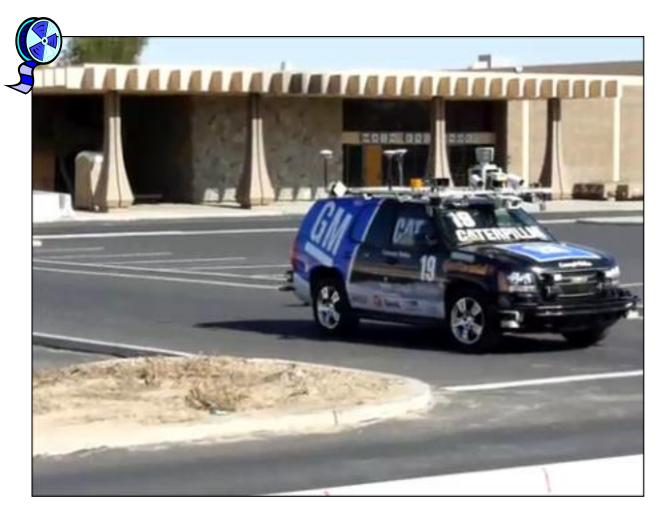
- Horizontal velocity control via vision system before landing (DIMES)
- Stereo vision for local mapping and reactive planning (GESTALT)
- Visual odometry in areas of high slippage
- On May 01, 2009 Spirit got stuck in soft soil
- On Jan. 26, 2010 it was reassigned as a stationary science platform

11 NASA: Mars Exploration Rover Mission

12 ETH-ASL: Autonomous Robot for Planetary Exploration

13 DARPA: Grand & Urban Challenges

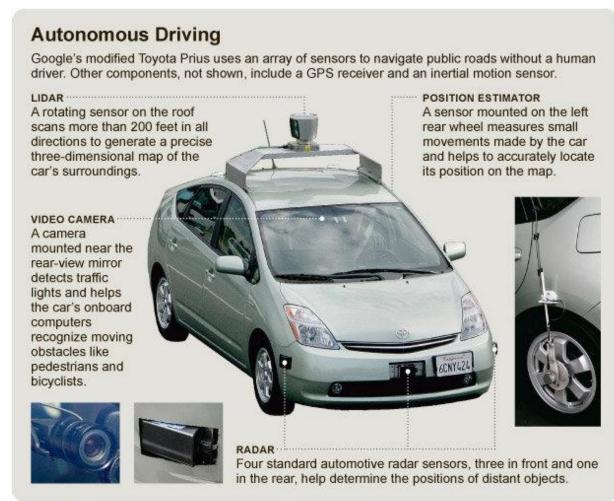
- Darpa Grand Challenge 2004
 - 130 mile course in Mojave desert
 - None of the teams finished the course
- Darpa Grand Challenge 2005
 - Again a desert course, but with added complications
 - 5 Teams finished
- DARPA Urban Challenge 2007
 - Inner-city course
 - Obeyance of traffic rules
 - Frequent denial of global positioning (GPS)


14 DARPA: Grand & Urban Challenges

Grand Challenge 2005 Trials

DARPA: Grand & Urban Challenges

Urban Challenge 2007


16 ETHZ-ASL: SmartTer

Visualization

Google: Autonomous Driving in traffic

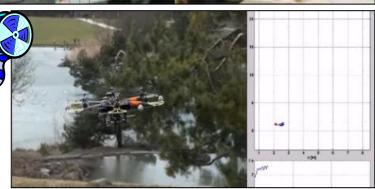
- October 2010
- Self-driving car in real traffic
- Toyota Prius + a variety of sensors:
 - Lidar,
 - Video camera,
 - Radars,
 - GPS receiver,
 - etc.
- Autonomous Driving:
 - sense the surroundings
 - mimic the decisions of a human driver

Source: Google

THE NEW YORK TIMES; PHOTOGRAPHS BY RAMIN RAHIMIAN FOR THE NEW YORK TIM

Google: Autonomous Driving in traffic

- Plan route like a GPS navigator but use extra data to decide on driving actions
- Boost safety & efficiency
- 7 cars,140 000 miles with minimal human intervention
- Autonomous cars are still years from mass production


Video: ABC News

19 sFly: Swarm of micro Flying Robots

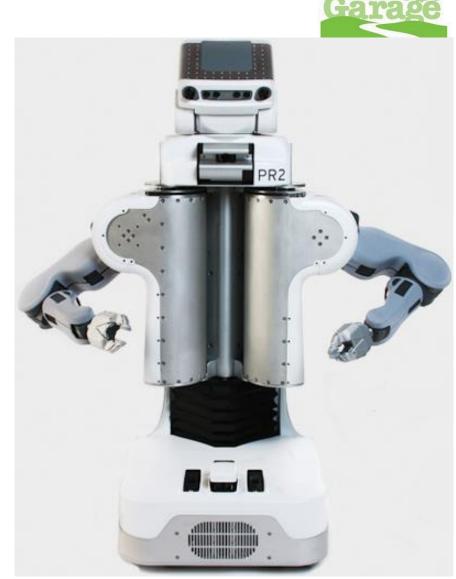
- Ongoing EU project
- Coordinated flight in small swarms over previously unknown areas
- Autonomous micro helicopters for:
 - inspection,
 - exploration,
 - search & rescue,
 - monitoring & surveillance
- Access to:
 - environments where no human or other vehicles can get access to
 - GPS-denied environments
- Vision-based fully autonomous navigation

© R. Siegwart, ETH Zurich - ASL

Humanoid Robot: ASIMO

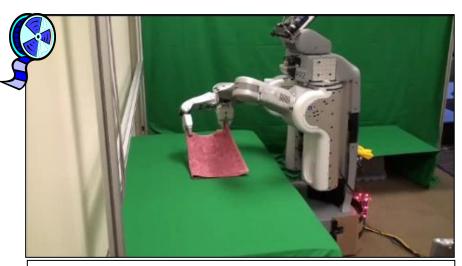
HONDA
The Power of Dreams

- Honda's ASIMO:Advanced Step in Innovative MObility
- Designed to help people in their everyday lives
- One of the most advanced humanoid robots
 - Compact, lightweight
 - Sophisticated walk technology
 - Human-friendly design



Video: Honda

Willow


PR2: Personal Robot 2

- Robot for reasearch and experimentation
- Development platform:
 - Cameras, Laser scanners,
 Accelerometer, Tactile sensors
 - 16 CPU cores
 - Sophisticated joints design for safety
 - Variety of networking tools for communicating data
- ROS: Robot Operating System free, open source, software development platform integrating libraries and tools
- Cost: \$400 000

© R. Siegwart, ETH Zurich - ASL

PR2: applications


Fold towels

Fetch beer

Clean-up with cart

Navigation

© R. Siegwart, ETH Zurich - ASL