Unsupervised Learning: Clustering

Some material adapted from slides by Andrew Moore, CMU. See http://www.autonlab.org/tutorials/ for a repository of Data Mining tutorials

Unsupervised Learning

- Supervised learning used labeled data pairs (x, y) to learn a function f : X→Y.
- But, what if we don't have labels?
- No labels = unsupervised learning
- Only some points are labeled = semi-supervised
 learning
 - Getting labels may be expensive, so we only get a few
- **Clustering** is the unsupervised grouping of data points. It can be used for **knowledge discovery**

Clustering algorithms

- There are many clustering algorithms
- Clustering is typically done using a distance measure defined between instances
- The distance is defined in the instance feature space
- Agglomerative approach works bottom up:
 - Treat each instance as a cluster
 - Merge the two closest clusters
 - Repeat until the stop condition is met
- Top-down approach starts a cluster with all instances
 - Find a cluster to split into two or more smaller clusters
 - Repeat until stop condition met

Clustering Data

- Randomly choose k cluster center locations (centroids)
- Loop until convergence
 - Assign each point to the cluster of the closest centroid
 - Re-estimate the cluster centroids based on the data assigned to each
 - Convergence: no point is assigned to a different cluster

- Randomly choose k cluster center locations (centroids)
- Loop until convergence
 - Assign each point to the cluster of the closest centroid.
 - Re-estimate the cluster centroids based on the data assigned to each
 - Convergence: no point is assigned to a different cluster

- Randomly choose k cluster center locations (centroids)
- Loop until convergence
 - Assign each point to the cluster of the closest centroid
 - Re-estimate the cluster centroids based on the data assigned to each
 - Convergence: no point is assigned to a different cluster

- Randomly choose k cluster center locations (centroids)
- Loop until convergence
 - Assign each point to the cluster of the closest centroid
 - Re-estimate the cluster centroids based on the data assigned to each
- Convergence: no point is assigned to a different cluster

	Weka Explorer
Preprocess Classify Cluster Associate Select at	tributes Visualize
Clusterer	
Choose SimpleKMeans -init 0 -max-candidates 100 -periodic-pruning 10000 -min-density 2.0 -t1 -1.25 -t2 -1.0 -N 3 -A "wek	
Cluster mode	Clusterer output
Use training set Sumplied test set	=== Run information ===
 Supplied test set Percentage split Classes to clusters evaluation (Nom) class Store clusters for visualization 	Scheme: weka.clusterers.SimpleKMeans -init 0 -max-candidate Relation: iris Instances: 150 Attributes: 5 sepallength sepalwidth petallength
Ignore attributes Start Stop	Ignored: class Test mode: evaluate on training data
Result list (right-click for options)	=== Clustering model (full training set) ===
13:11:45 - EM 13:12:30 - SimpleKMeans 14:09:05 - SimpleKMeans 14:09:57 - SimpleKMeans 14:10:01 - SimpleKMeans	kMeans ====== Number of iterations: 6 Within cluster sum of squared errors: 6.9981140048267605
14:10:03 - SimpleKMeans	
Status OK	

```
Using scikit-learn for K-means clustering on Fisher's Iris dataset with a 3D graph
In [38]: %matplotlib inline
         from sklearn import datasets, cluster
         import numpy as np
         import matplotlib.pyplot as plt
         from mpl toolkits.mplot3d import Axes3D
         # Random seed chosen so cluster labeling corrsponds to the original y values
         np.random.seed(2)
In [39]: # load data
         iris = datasets.load iris()
         X iris = iris.data
         y iris = iris.target
In [40]: # Form three clusters
         k means = cluster.KMeans(n clusters=3)
         k means.fit(X iris)
         labels = k means.labels
In [41]: # How many of the samples correctly labeled?
         correct labels = sum(y iris == labels)
         print("Result: %d of %d samples correctly labeled, inertia:%f." % (correct labels,
         Result: 134 of 150 samples correctly labeled, inertia:78.940841.
```


Problems with K-Means

- Only works for numeric data (typical reals)
- Very sensitive to the initial points
 - Do many runs of k-Means, each with different initial centroids
 - Seed the centroids using a better method than random. (e.g., Farthest-first sampling)
- Must manually choose k
 - Learn the optimal k for the clustering. (Note that this requires a performance measure)

Problems with K-Means

• How do you tell it which clustering you want?

Constrained clustering techniques

- – Different-cluster constraint (cannot-link)

Hierarchical Clustering

Recursive partitioning/merging of a data set

Dendogram

- Represents all partitionings of the data
- We can get a K clustering by looking at the connected components at any given level
- Frequently binary dendograms, but n-ary dendograms are easy to obtain with minor changes to algorithms

Advantages of hierarchical clustering

- Don't need to specify the number of clusters
- Good for data visualization
 - -See how the data points interact at many levels
 - Can view the data at multiple levels of granularity
 - Understand how all points interact
- Specifies all of the K clusterings/partitions

Hierarchical Clustering

- Common in many domains
 - Biologists and social scientists
 - Gene expression data
 - Document/web page organization
 - DMOZ
 - Yahoo directories

Divisive hierarchical clustering

- Top-down
- Finding the best partitioning of the data is generally exponential in time
- Common approach:
 - Let C be a set of clusters
 - Initialize **C** to be the one-clustering of the data
 - While there exists a cluster c in C
 - remove *c* from **C**
 - partition c into 2 clusters using a flat clustering algorithm, c_1 and c_2
 - Add to c_1 and c_2 **C**
- Bisecting k-means

split using flat clustering

split using flat clustering

Hierarchical Agglomerative Clustering

- Let **C** be a set of clusters
- Initialize C to all points/docs as separate clusters
- While C contains more than one cluster
 - -find c_1 and c_2 in **C** that are closest together
 - -remove c_1 and c_2 from **C**
 - -merge c_1 and c_2 and add resulting cluster to **C**
- History of merging forms a binary tree or hierarchy
- Q: How to measure distance between clusters?

Single-link

- Similarity of the *most* similar (single-link)

Complete-link

- Similarity of the "furthest" points, the least similar

Why are these "local" methods used?

efficiency

• Centroid

- Clusters whose centroids (centers of gravity) are the most similar

$$\left\|\mu(L)-\mu(R)\right\|^2$$

• Average-link

- Average similarity between all pairs of elements

