Support Vector Machines

Some slides were borrowed from Andrew Moore's PowetPoint slides on SVMs. Andrew's PowerPoint repository is here: http://www.cs.cmu.edu/~awm/tutorials . Comments and corrections gratefully received.

Support Vector Machines

- Very popular ML technique
 - Became popular in the late 90s (Vapnik 1995; 1998)Invented in the late 70s (Vapnik, 1979)
- Controls complexity and overfitting, so works well on a wide range of practical problems
- Can handle high dimensional vector spaces, which makes feature selection less critical
- Very fast and memory efficient implementations, e.g., <u>svm_light</u>
- Not always the best solution, especially for problems with small vector spaces

f(x,w,b) = sign(w. x - b)

- denotes +1
- ° denotes -1

How would you classify this data?

f(x,w,b) = sign(w. x - b)

denotes -1 0

 \circ

How would you classify this data?

0 0

° denotes -1

° 0

 C

Copyright © 2001, 2003, Andrew W Moore

Why Maximum Margin?

1. Intuitively this feels safest

- 2. If we've made a small error in the location of the boundary (it's been jolted in its perpendicular direction) this gives us least chance of causing a misclassification
- 3. LOOCV is easy since the model is immune to removal of any non-supportvector datapoints
- 4. There's some theory (using VC dimension) that is related to (but not the same as) the proposition that this is a good thing

5. Empirically it works very very well

LOOCV = leave one out cross validation

- How do we represent this mathematically?
- ... in *m* input dimensions?

- Plus-plane = $\{x : w : x + b = +1\}$
- Minus-plane = $\{x : w : x + b = -1\}$

Classify as.. +1 if $w \cdot x + b \ge 1$

-1 if $w \cdot x + b <= -1$ Universe if $-1 < w \cdot x + b < 1$ explodes

Learning the Maximum Margin Classifier

- Given a guess of *w* and *b* we can
 - Compute whether all data points in the correct half-planes
 - Compute the width of the margin
- Write a program to search the space of ws and bs to find widest margin matching all the datapoints.
- *How?* -- Gradient descent? Simulated Annealing? Matrix Inversion? EM? Newton's Method?

Learning SVMs

- Trick #1: Just find the points that would be closest to the optimal separating plane ("support vectors") and work directly from those instances
- Trick #2: Represent as a **quadratic optimization problem**, and use quadratic programming techniques
- Trick #3 ("kernel trick"):
 - Instead of using the ray dimensional feature spatiation functions (e.g., polynor the base features)
 - Find separating plane /
 - -Voila: A nonlinear classifier!

SVM Performance

- Can handle very large features spaces (e.g., 100K features)
- Relatively fast
- Anecdotally they work very very well indeed
- Example: They are currently the best-known classifier on a well-studied hand-written-character recognition benchmark

Binary vs. multi classification

- SVMs can only do binary classification
- Two approaches to multi classification:
 - -One-vs-all: can turn an n-way classification into n binary classification tasks
 - E.g., for zoo problem, do mammal vs. notmammal, fish vs. not-fish, ...
 - Pick the one that results in the highest score
 - -N*(N-1)/2 One-vs-one classifiers that vote on results
 - Mammal vs. fish, mammal vs. reptile, etc...

Feature Engineering

- Finding features for data instances that make machine learning algorithms more effective
- Usually a combination of domain knowledge and experimentation
- For example, consider the problem of classifying an email message as spam or not
- What are good features?

Spam Features

- Finding features for data instances that make machine learning algorithms more effective
- Usually a combination of domain knowledge and experimentation
- For example, consider the problem of classifying an email message as spam or not
- What are good features?

Example of a Spam Message

Received: from nm37-vm8.bullet.mail.gq1.yahoo.com (nm37vm8.bullet.mail.gq1.yahoo.com [98.136.217.44]) Date: Mon, 2 May 2016 15:26:36 +0000 (UTC) From: "Mrs.Sabeen Gharam" <SabeenGharam1@outlook.com> Reply-To: "Mrs.Sabeen Gharam" <aramsabeen1@gmail.com> Subject: CAN YOU HANDLE INVESTMENT?

CAN YOU HANDLE INVESTMENT?

My name is Mrs. Sabeen Gharam Aram widow of late Mohamed Assad Aram from idlib in syria arab republic, am in an urgent need of an individual or organization abroad that is willing to help to secure, move and invest my late husband's fund which he has offshore; the investment will depend on the agreement with me.

Mrs.Sabeen Gharam Aram

Possible Features

- Each of the words in the message
- Is there a TO: header?
- Does FROM: match REPLY-TO:?
- Is FROM: address a free email service?
- Is the subject in all caps?
- Length of message in log(#bytes)
- Are their attachments?
- Extension of any attached file
- TLD of FROM: address (e.g., .com, .edu, .org, ...)
- ... dozens more ...

Evaluating Features

- Choose some features, generate training data, train system, evaluation using 10-fold cross validation
- Some systems can show you the features that contribute the most to classification
- If not, perform ablation experiments by dropping a feature and re-training
- And try adding a new feature and training
- You can also automate this to try adding/removing various subsets of features
- Rely on your own knowledge and intuition also

Feature Engineering for Text Classification

- Typical features: words and/or phrases along with term frequency or (better) TF-IDF scores
- ∆TFIDF amplifies the training set signals by using the ratio of the IDF for the negative and positive collections
- Results in a significant boost in accuracy

Text: The quick brown fox jumped over the lazy white dog.

Features: the 2, quick 1, brown 1, fox 1, jumped 1, over 1, lazy 1, white 1, dog 1, the quick 1, quick brown 1, brown fox 1, fox jumped 1, jumped over 1, over the 1, lazy white 1, white dog 1

ATFIDF BoW Feature Set

 $C_{t,d} * \log_2\left(\frac{N_t}{P}\right)$

- Value of feature t in document d is
- Where
 - $-C_{t,d} =$ count of term t in document d
 - $-N_t$ = number of negative labeled training docs with term t
 - $-P_t =$ number of positive labeled training docs with term t
- Normalize to avoid bias towards longer documents
- Gives greater weight to rare (significant) words
- Downplays very common words
- Similar to Unigram + Bigram BoW in other aspects

Example: ΔTFIDF vs TFIDF vs TF

15 features with highest values for a review of *City of Angels*

Δtfidf	tfidf	tf
city	angels	,
cage is	angels is	the
nediocrity	, city	
criticized	of angels	to
exhilarating	maggie,	of
well worth	city of	а
out well	maggie	and
should know	angel who	is
eally enjoyed	movie goers	that
naggie,	cage is	it
t's nice	seth,	who
s beautifully	goers	in
wonderfully	angels,	more
of angels	us with	you
Underneath the	city	but

Improvement over TFIDF (Uni- + Bi-grams)

- Movie Reviews: 88.1% Accuracy vs. 84.65% at 95% Confidence Interval
- **Subjectivity Detection** (Opinionated or not): 91.26% vs. 89.4% at 99.9% Confidence Interval
- **Congressional Support for Bill** (Voted for/ Against): 72.47% vs. 66.84% at 99.9% Confidence Interval
- Enron Email Spam Detection: (Spam or not): 98.917% vs. 96.6168 at 99.995% Confidence Interval
- All tests used 10 fold cross validation
- At least as good as mincuts + subjectivity detectors on movie reviews (87.2%)