First-Order
 Logic: Review

First-order logic

- First-order logic (FOL) models the world in terms of
- Objects, which are things with individual identities
- Properties of objects that distinguish them from others
- Relations that hold among sets of objects
- Functions, which are a subset of relations where there is only one "value" for any given "input"
- Examples:
- Objects: Students, lectures, companies, cars ...
- Relations: Brother-of, bigger-than, outside, part-of, hascolor, occurs-after, owns, visits, precedes, ...
- Properties: blue, oval, even, large, ...
- Functions: father-of, best-friend, second-half, more-than ...

User provides

- Constant symbols representing individuals in the world
-Mary, 3, green
- Function symbols, map individuals to individuals
- father_of(Mary) = John
- color_of(Sky) = Blue
- Predicate symbols, map individuals to truth values
- greater(5,3)
- green(Grass)
- color(Grass, Green)

FOL Provides

- Variable symbols
-E.g., x, y, foo
- Connectives
-Same as in propositional logic: not (\neg), and (\wedge), or (\vee), implies (\rightarrow), iff (\leftrightarrow)
- Quantifiers
-Universal $\forall \mathbf{x}$ or (Ax)
- Existential $\mathbf{\exists x}$ or (Ex)

Sentences: built from terms and atoms

- A term (denoting a real-world individual) is a constant symbol, variable symbol, or n-place function of n terms, e.g.:
-Constants: john, umbc
-Variables: $\mathrm{x}, \mathrm{y}, \mathrm{z}$
-Functions: mother_of(john), phone(mother(x))
- Ground terms have no variables in them -Ground: john, father_of(father_of(john)) -Not Ground: father_of(X)

Sentences: built from terms and atoms

- An atomic sentence (which has value true or false) is an n-place predicate of n terms, e.g.: -green(Kermit))
-between(Philadelphia, Baltimore, DC) -loves(X, mother(X))
- A complex sentence is formed from atomic sentences connected by logical connectives:

$$
\neg \mathrm{P}, \mathrm{P} \vee \mathrm{Q}, \mathrm{P} \wedge \mathrm{Q}, \mathrm{P} \rightarrow \mathrm{Q}, \mathrm{P} \leftrightarrow \mathrm{Q}
$$

where P and Q are sentences

Sentences: built from terms and atoms

- quantified sentences adds quantifiers \forall and \exists
$-\forall x$ loves(x, mother(x))
$-\exists \mathrm{x}$ number(x) ^ greater($\mathrm{x}, 100$), prime (x)
- A well-formed formula (wff) is a sentence containing no "free" variables, i.e., all variables are "bound" by either a universal or existential quantifiers
$(\forall \mathrm{x}) \mathrm{P}(\mathrm{x}, \mathrm{y})$ has x bound as a universally quantified variable, but y is free

A BNF for FOL

```
S := <Sentence> ;
<Sentence> := <AtomicSentence> |
    <Sentence> <Connective> <Sentence> |
    <Quantifier> <Variable>,... <Sentence> |
    "NOT" <Sentence> |
    "(" <Sentence> ")";
<AtomicSentence> := <Predicate> "(" <Term>, ... ")" |
    <Term> "=" <Term>;
<Term> := <Function> "(" <Term>, ... ")" |
    <Constant> |
    <Variable>;
<Connective> := "AND" | "OR" | "IMPLIES" | "EQUIVALENT";
<Quantifier> := "EXISTS" | "FORALL" ;
<Constant> := "A" | "X1" | "John" | ... ;
<Variable> := "a" | "x" | "s" | ... ;
<Predicate> := "Before" | "HasColor" | "Raining" | ... ;
<Function> := "Mother" | "LeftLegOf" | ... ;
```


Quantifiers

- Universal quantification
$-(\forall x) P(x)$ means P holds for all values of x in domain associated with variable
- E.g., ($\forall \mathrm{x}$) dolphin(x) \rightarrow mammal(x)
- Existential quantification
$-(\exists x) P(x)$ means P holds for some value of x in domain associated with variable
- E.g., ($\exists \mathrm{x}$) mammal(x) \wedge lays_eggs(x)
-This lets us make a statement about some object without naming it

Quantifiers (1)

- Universal quantifiers often used with implies to form rules:
$(\forall x) \operatorname{student}(x) \rightarrow \operatorname{smart}(x)$ means "All students are smart"
- Universal quantification rarely used to make blanket statements about every individual in the world:
$(\forall x) \operatorname{student}(x) \wedge \operatorname{smart}(x)$ means "Everyone in the world is a student and is smart"

Quantifiers (2)

- Existential quantifiers usually used with "and" to specify a list of properties about an individual:
$(\exists x) \operatorname{student}(x) \wedge \operatorname{smart}(x)$ means "There is a student who is smart"
- Common mistake: represent this in FOL as: ($\exists x$) student $(x) \rightarrow \operatorname{smart}(x)$
- What does this sentence mean?
$-? ?$

Quantifier Scope

- FOL sentences have structure, like programs
- In particular, the variables in a sentence have a scope
- For example, suppose we want to say
-"everyone who is alive loves someone"
$-(\forall x)$ alive $(x) \rightarrow(\exists y)$ loves (x, y)
- Here's how we scope the variables

$$
(\forall x) \text { alive }(x) \rightarrow(\exists y) \text { loves }(x, y)
$$

- Scope of x
- Scope of y

Quantifier Scope

- Switching order of universal quantifiers does not change the meaning
$-(\forall x)(\forall y) P(x, y) \leftrightarrow(\forall y)(\forall x) P(x, y)$
- "Dogs hate cats" (i.e., "all dogs hate all cats")
- You can switch order of existential quantifiers
$-(\exists x)(\exists y) P(x, y) \leftrightarrow(\exists y)(\exists x) P(x, y)$
- "A cat killed a dog"
- Switching order of universal and existential quantifiers does change meaning:
- Everyone likes someone: $(\forall x)(\exists y)$ likes(x,y)
- Someone is liked by everyone: $(\exists y)(\forall x)$ likes (x, y)

Procedural example 1

 def verify1():\# Everyone likes someone: $(\forall x)(\exists y)$ likes (x, y)
for x in people():
found = False
for y in people():
if likes(x,y):
found $=$ True break

Every person has at least one individual that they like.
if not Found:
return False
return True

Procedural example 2

 def verify2():\# Someone is liked by everyone: ($\exists y)(\forall x)$ likes(x,y)
for y in people():
found $=$ True
for x in people():
if not likes(x, y):
found $=$ False break

There is a person who is liked by every person in the universe.
if found
return True
return False

Connections between \forall and \exists

- We can relate sentences involving \forall and \exists using extensions to De Morgan's laws:

1. $(\forall x) \neg P(x) \leftrightarrow \neg(\exists x) P(x)$
2. $\neg(\forall x) P \leftrightarrow(\exists x) \neg P(x)$
3. $(\forall x) P(x) \leftrightarrow \neg(\exists x) \neg P(x)$
4. $(\exists \mathrm{x}) \mathrm{P}(\mathrm{x}) \leftrightarrow \neg(\forall \mathrm{x}) \neg \mathrm{P}(\mathrm{x})$

- Examples

1. All dogs don’t like cats \leftrightarrow No dogs like cats
2. Not all dogs dance \leftrightarrow There is a dog that doesn't dance
3. All dogs sleep \leftrightarrow There is no dog that doesn't sleep
4. There is a dog that talks \leftrightarrow Not all dogs can't talk

Quantified inference rules

- Universal instantiation
$-\forall \mathrm{x}(\mathrm{x}) \therefore \mathrm{P}(\mathrm{A}) \quad \#$ where A is some constant
- Universal generalization
$-\mathrm{P}(\mathrm{A}) \wedge \mathrm{P}(\mathrm{B}) \ldots \therefore \forall \mathrm{x}(\mathrm{x}) \#$ if $A B \ldots$ enumerate all \# individuals
- Existential instantiation
$-\exists \mathrm{x} \mathrm{P}(\mathrm{x}) \therefore \mathrm{P}(\mathrm{F})$
\leftarrow Skolem* constant F
F must be a "new" constant not appearing in the $K B$
- Existential generalization
$-\mathrm{P}(\mathrm{A}) \therefore \exists \mathrm{x} P(\mathrm{x})$

Universal instantiation (a.k.a. universal elimination)

- If $(\forall x) P(x)$ is true, then $P(C)$ is true, where C is any constant in the domain of x , e.g.:
$(\forall \mathrm{x})$ eats $(\mathrm{John}, \mathrm{x}) \Rightarrow$ eats(John, Cheese18)
- Note that function applied to ground terms is also a constant
$(\forall \mathrm{x})$ eats(John, x$) \Rightarrow$
eats(John, contents(Box42))

Existential instantiation (a.k.a. existential elimination)

- From ($\exists \mathrm{x}$) $\mathrm{P}(\mathrm{x})$ infer $\mathrm{P}(\mathrm{c})$, e.g.:
$-(\exists x)$ eats(Mikey, $x) \rightarrow$ eats(Mikey, Stuff345)
- The variable is replaced by a brand-new constant not occurring in this or any sentence in the KB
- Also known as skolemization; constant is a skolem constant
- We don't want to accidentally draw other inferences about it by introducing the constant
- Can use this to reason about unknown objects, rather than constantly manipulating existential quantifiers

Existential generalization (a.k.a. existential introduction)

- If $P(c)$ is true, then $(\exists x) P(x)$ is inferred, e.g.: Eats(Mickey, Cheese18) \Rightarrow ($\exists \mathrm{x}$) eats(Mickey, x)
- All instances of the given constant symbol are replaced by the new variable symbol
- Note that the variable symbol cannot already exist anywhere in the expression

Translating English to FOL

Every gardener likes the sun
$\forall x$ gardener $(x) \rightarrow$ likes $(x, S u n)$
You can fool some of the people all of the time
$\exists \mathrm{x} \forall \mathrm{t}$ person $(\mathrm{x}) \wedge \operatorname{time}(\mathrm{t}) \rightarrow$ can-fool (x, t)
You can fool all of the people some of the time $\exists \mathrm{t}$ time $(\mathrm{t}) \wedge \forall \mathrm{x}$ person $(\mathrm{x}) \rightarrow$ can-fool (x, t)
$\forall x$ person $(x) \rightarrow \exists \mathrm{t}$ time $(\mathrm{t}) \wedge \operatorname{can}-$ fool (x, t) readings of NL sentence

All purple mushrooms are poisonous
$\forall \mathrm{x}($ mushroom $(\mathrm{x}) \wedge$ purple $(\mathrm{x})) \rightarrow$ poisonous (x)

Translating English to FOL

No purple mushroom is poisonous (two ways)
$\neg \exists \mathrm{x}$ purple $(\mathrm{x}) \wedge$ mushroom $(\mathrm{x}) \wedge$ poisonous (x) $\forall \mathrm{x}($ mushroom $(\mathrm{x}) \wedge$ purple $(\mathrm{x})) \rightarrow \neg$ poisonous (x)

There are exactly two purple mushrooms
$\exists \mathrm{x} \exists \mathrm{y}$ mushroom $(\mathrm{x}) \wedge$ purple $(\mathrm{x}) \wedge$ mushroom $(\mathrm{y}) \wedge$ purple $(\mathrm{y}) \wedge \neg(\mathrm{x}=\mathrm{y}) \wedge \forall \mathrm{z}($ mushroom $(\mathrm{z}) \wedge$ purple $(\mathrm{z}))$ $\rightarrow((\mathrm{x}=\mathrm{z}) \vee(\mathrm{y}=\mathrm{z}))$

Obama is not short
\neg short(Obama)

Logic and People

- People can easily be confused by logic
- And are often suspicious of it, or give it too much weight

FIRST VILLAGER: We have found a witch. May we burn her?
ALL: A witch! Burn her!
BEDEVERE: Why do you think she is a witch?
SECOND VILLAGER: She turned $m e$ into a newt.
B: A newt?
V2 (after looking at himself for some time): I got better.
ALL: Burn her anyway.
B: Quiet! Quiet! There are ways of telling whether she is a witch.

B: Tell me... what do you do with witches?
ALL: Burn them!
B: And what do you burn, apart from witches?
V4: ...wood?
B: So why do witches burn?
V2 (pianissimo): because they' re made of wood?
B: Good.
ALL: I see. Yes, of course.

B: So how can we tell if she is made of wood?
V1: Make a bridge out of her.
B: Ah... but can you not also make bridges out of stone?
ALL: Yes, of course... um... er...
B: Does wood sink in water?
ALL: No, no, it floats. Throw her in the pond.
B: Wait. Wait... tell me, what also floats on water?
ALL: Bread? No, no no. Apples... gravy... very small rocks...

B: No, no, no,

KING ARTHUR: A duck!

(They all turn and look at Arthur. Bedevere looks up, very impressed.)
B: Exactly. So... logically...
V1 (beginning to pick up the thread): If she... weighs the same as a duck... she's made of wood.

B: And therefore?
ALL: A witch!

Fallacy: Affirming the conclusion

$\forall \mathrm{x}$ witch $(\mathrm{x}) \rightarrow$ burns (x)
$\forall \mathrm{x}$ wood $(\mathrm{x}) \rightarrow$ burns(x)
$\therefore \forall \mathrm{z}$ witch $(\mathrm{x}) \rightarrow \operatorname{wood}(\mathrm{x})$
$\mathrm{p} \rightarrow \mathrm{q}$
$r \rightarrow q$

$$
\mathrm{p} \rightarrow \mathrm{r}
$$

Monty Python Near-Fallacy \#2

wood $(\mathrm{x}) \rightarrow$ can-build-bridge(x)
\therefore can-build-bridge $(\mathrm{x}) \rightarrow \operatorname{wood}(\mathrm{x})$

- B: Ah... but can you not also make bridges out of stone?

Monty Python Fallacy \#3

$\forall \mathrm{x}$ wood(x$) \rightarrow$ floats(x)
$\forall x$ duck-weight (x) \rightarrow floats(x)
$\therefore \forall \mathrm{x}$ duck-weight(x$) \rightarrow \operatorname{wood}(\mathrm{x})$
$\mathrm{p} \rightarrow \mathrm{q}$
$r \rightarrow q$
$\therefore \mathrm{r} \rightarrow \mathrm{p}$

Monty Python Fallacy \#4

$\forall z \operatorname{light}(\mathrm{z}) \rightarrow \operatorname{wood}(\mathrm{z})$
light(W)
$\therefore \operatorname{wood}(\mathrm{W})$
\% ok...............
witch $(\mathrm{W}) \rightarrow \operatorname{wood}(\mathrm{W}) \quad \%$ applying universal instan. $\%$ to fallacious conclusion \#1
wood(W)
\therefore witch(z)

Simple genealogy KB in FOL

Design a knowledge base using FOL that

- Has facts of immediate family relations, e.g., spouses, parents, etc.
- Defines of more complex relations (ancestors, relatives)
- Detect conflicts, e.g., you are your own parent
- Infers relations, e.g., grandparernt from parent
- Answers queries about relationships between people

How do we approach this?

- Design an initial ontology of types, e.g. -e.g., person, man, woman, gender
- Add general individuals to ontology, e.g.
- gender(male), gender(female)
- Extend ontology be defining relations, e.g.
- spouse, has_child, has_parent
- Add general constraints to relations, e.g.
-spouse $(\mathrm{X}, \mathrm{Y}) \Rightarrow \sim \mathrm{X}=\mathrm{Y}$
$-\operatorname{spouse}(\mathrm{X}, \mathrm{Y})=>$ person (X), person(Y)
- Add FOL sentences for inference, e.g.
- spouse $(\mathrm{X}, \mathrm{Y}) \Leftrightarrow$ spouse (Y, X)
$-\operatorname{man}(\mathrm{X}) \Leftrightarrow$ person $(\mathrm{X}) \wedge$ has_gender $(\mathrm{X}$, male $)$

Simple genealogy KB in FOL

- Has facts of immediate family relations, e.g. spouses, parents, etc.
- Has definitions of more complex relations (ancestors, relatives)
- Can detect conflicts, e.g., you are your own parent
- Can infer relations, e.g., grandparernt from parent
- Can answer queries about relationships between people

Example: A simple genealogy KB by FOL

- Predicates:

$-\operatorname{parent}(x, y), \operatorname{child}(x, y)$, father($x, y)$, daughter (x, y), etc.
$-\operatorname{spouse}(x, y)$, husband(x, y, , wife(x, y)
$-\operatorname{ancestor}(\mathrm{x}, \mathrm{y})$, descendant($\mathrm{x}, \mathrm{y})$

- male(x), female(y)
- relative(x, y)
- Facts:
- husband(Joe, Mary), son(Fred, Joe)
- spouse(John, Nancy), male(John), son(Mark, Nancy)
- father(Jack, Nancy), daughter(Linda, Jack)
- daughter(Liz, Linda)
- etc.

Example Axioms

$(\forall \mathrm{x}, \mathrm{y})$ has_parent $(\mathrm{x}, \mathrm{y}) \leftrightarrow$ has_child (y, x)
$(\forall \mathrm{x}, \mathrm{y})$ father $(\mathrm{x}, \mathrm{y}) \leftrightarrow \operatorname{parent}(\mathrm{x}, \mathrm{y}) \wedge$ male $(\mathrm{x}) ;$ similar for mother (x, y) $(\forall \mathrm{x}, \mathrm{y})$ daughter $(\mathrm{x}, \mathrm{y}) \leftrightarrow \operatorname{child}(\mathrm{x}, \mathrm{y}) \wedge$ female $(\mathrm{x}) ; \operatorname{similar}$ for $\operatorname{son}(x, y)$ $(\forall \mathrm{x}, \mathrm{y}) \operatorname{husband}(\mathrm{x}, \mathrm{y}) \leftrightarrow \operatorname{spouse}(\mathrm{x}, \mathrm{y}) \wedge \operatorname{male}(\mathrm{x}) ; \operatorname{similar}$ for wife (x, y) $(\forall \mathrm{x}, \mathrm{y})$ spouse $(\mathrm{x}, \mathrm{y}) \leftrightarrow$ spouse $(\mathrm{y}, \mathrm{x}) ;$ spouse relation is symmetric $(\forall \mathrm{x}, \mathrm{y}) \operatorname{parent}(\mathrm{x}, \mathrm{y}) \rightarrow \operatorname{ancestor}(\mathrm{x}, \mathrm{y})$
$(\forall \mathrm{x}, \mathrm{y})(\exists \mathrm{z}) \operatorname{parent}(\mathrm{x}, \mathrm{z}) \wedge \operatorname{ancestor}(\mathrm{z}, \mathrm{y}) \rightarrow \operatorname{ancestor}(\mathrm{x}, \mathrm{y})$
($\forall \mathrm{x}, \mathrm{y})$ descendant $(\mathrm{x}, \mathrm{y}) \leftrightarrow \operatorname{ancestor}(\mathrm{y}, \mathrm{x})$
$(\forall \mathrm{x}, \mathrm{y})(\exists \mathrm{z}) \operatorname{ancestor}(\mathrm{z}, \mathrm{x}) \wedge \operatorname{ancestor}(\mathrm{z}, \mathrm{y}) \rightarrow$ relative (x, y)
$(\forall x, y)$ spouse $(x, y) \rightarrow$ relative $(x, y) ;$ related by marriage
$(\forall \mathrm{x}, \mathrm{y})(\exists \mathrm{z})$ relative $(\mathrm{z}, \mathrm{x}) \wedge$ relative $(\mathrm{z}, \mathrm{y}) \rightarrow$ relative $(\mathrm{x}, \mathrm{y}) ;$ transitive $(\forall \mathrm{x}, \mathrm{y})$ relative $(\mathrm{x}, \mathrm{y}) \leftrightarrow$ relative $(\mathrm{y}, \mathrm{x}) \quad ;$ symmetric

- Rules for genealogical relations

$(\forall x, y) \operatorname{parent}(x, y) \leftrightarrow \operatorname{child}(y, x)$
$(\forall \mathrm{x}, \mathrm{y})$ father $(\mathrm{x}, \mathrm{y}) \leftrightarrow \operatorname{parent}(\mathrm{x}, \mathrm{y}) \wedge \operatorname{male}(\mathrm{x}) ;$ similarly for mother (x, y)
$(\forall \mathrm{x}, \mathrm{y})$ daughter $(\mathrm{x}, \mathrm{y}) \leftrightarrow \operatorname{child}(\mathrm{x}, \mathrm{y}) \wedge$ female $(\mathrm{x}) ; \operatorname{similarly}$ for $\operatorname{son}(x, y)$
$(\forall \mathrm{x}, \mathrm{y})$ husband $(\mathrm{x}, \mathrm{y}) \leftrightarrow \operatorname{spouse}(\mathrm{x}, \mathrm{y}) \wedge \operatorname{male}(\mathrm{x}) ; \operatorname{similarly}$ for wife (x, y)
($\forall \mathrm{x}, \mathrm{y}) \operatorname{spouse}(\mathrm{x}, \mathrm{y}) \leftrightarrow \operatorname{spouse}(\mathrm{y}, \mathrm{x})$;spouse relation is symmetric
$(\forall \mathrm{x}, \mathrm{y}) \operatorname{parent}(\mathrm{x}, \mathrm{y}) \rightarrow \operatorname{ancestor}(\mathrm{x}, \mathrm{y})$
$(\forall \mathrm{x}, \mathrm{y})(\exists \mathrm{z}) \operatorname{parent}(\mathrm{x}, \mathrm{z}) \wedge \operatorname{ancestor}(\mathrm{z}, \mathrm{y}) \rightarrow \operatorname{ancestor}(\mathrm{x}, \mathrm{y})$
($\forall \mathrm{x}, \mathrm{y}$) descendant $(\mathrm{x}, \mathrm{y}) \leftrightarrow \operatorname{ancestor}(\mathrm{y}, \mathrm{x})$
$(\forall \mathrm{x}, \mathrm{y})(\exists \mathrm{z}) \operatorname{ancestor}(\mathrm{z}, \mathrm{x}) \wedge \operatorname{ancestor}(\mathrm{z}, \mathrm{y}) \rightarrow \operatorname{relative}(\mathrm{x}, \mathrm{y})$
;related by common ancestry
($\forall x, y$) spouse $(x, y) \rightarrow$ relative (x, y);related by marriage
$(\forall \mathrm{x}, \mathrm{y})(\exists \mathrm{z})$ relative $(\mathrm{z}, \mathrm{x}) \wedge$ relative $(\mathrm{z}, \mathrm{y}) \rightarrow$ relative $(\mathrm{x}, \mathrm{y}) ;$ transitive
($\forall \mathrm{x}, \mathrm{y}$) relative $(\mathrm{x}, \mathrm{y}) \leftrightarrow$ relative $(\mathrm{y}, \mathrm{x}) \quad ;$ symmetric

- Queries
- ancestor(Jack, Fred) ; the answer is yes
- relative(Liz, Joe) ; the answer is yes
- relative(Nancy, Matthew) ;no answer, no under closed world assumption
$-(\exists \mathrm{z})$ ancestor $(\mathrm{z}$, Fred $) \wedge$ ancestor($\mathrm{z}, \mathrm{Liz})$

Axioms for Set Theory in FOL

1. The only sets are the empty set and those made by adjoining something to a set:
$\forall \mathrm{s}$ set(s) <=> ($\mathrm{s}=$ EmptySet) $\mathrm{v}\left(\exists \mathrm{x}, \mathrm{r} \operatorname{Set}(\mathrm{r})^{\wedge} \mathrm{s}=\operatorname{Adjoin}(\mathrm{s}, \mathrm{r})\right)$
2. The empty set has no elements adjoined to it:
$\sim \exists \mathrm{x}, \mathrm{s} \operatorname{Adjoin}(\mathrm{x}, \mathrm{s})=$ EmptySet
3. Adjoining an element already in the set has no effect:
$\forall \mathrm{x}, \mathrm{s} \operatorname{Member}(\mathrm{x}, \mathrm{s})<=>\mathrm{s}=\operatorname{Adjoin}(\mathrm{x}, \mathrm{s})$
4. The only members of a set are the elements that were adjoined into it:
$\forall \mathrm{x}, \mathrm{s} \operatorname{Member}(\mathrm{x}, \mathrm{s})<=>\exists \mathrm{y}, \mathrm{r}(\mathrm{s}=\operatorname{Adjoin}(\mathrm{y}, \mathrm{r}) \wedge(\mathrm{x}=\mathrm{y} \vee \operatorname{Member}(\mathrm{x}, \mathrm{r}))$)
5. A set is a subset of another iff all of the 1 st set' s members are members of the $2^{\text {nd }}$:
$\forall \mathrm{s}, \mathrm{r} \operatorname{Subset}(\mathrm{s}, \mathrm{r})<=>(\forall \mathrm{x} \operatorname{Member}(\mathrm{x}, \mathrm{s})=>\operatorname{Member}(\mathrm{x}, \mathrm{r}))$
6. Two sets are equal iff each is a subset of the other:
$\forall \mathrm{s}, \mathrm{r}(\mathrm{s}=\mathrm{r})<=>(\operatorname{subset}(\mathrm{s}, \mathrm{r}) \wedge \operatorname{subset}(\mathrm{r}, \mathrm{s}))$
7. Intersection
$\forall \mathrm{x}, \mathrm{s} 1, \mathrm{~s} 2$ member(X,intersection(S1,S2)) $<=>\operatorname{member}(\mathrm{X}, \mathrm{s} 1)^{\wedge}$ member(X,s2)
8. Union
$\exists \mathrm{x}, \mathrm{s} 1, \mathrm{~s} 2$ member(X,union(s1,s2)) <=> member(X,s1) v member(X,s2)

Semantics of FOL

- Domain M: the set of all objects in the world (of interest)
- Interpretation I: includes
- Assign each constant to an object in M
- Define each function of n arguments as a mapping $M^{n}=>M$
- Define each predicate of n arguments as a mapping $\mathrm{M}^{\mathrm{n}}=>\{\mathrm{T}, \mathrm{F}\}$
- Therefore, every ground predicate with any instantiation will have a truth value
- In general there's an infinite number of interpretations because $|\mathrm{M}|$ is infinite
- Define logical connectives: $\sim, \wedge, \mathbf{v},=>,<=>$ as in PL
- Define semantics of $(\forall x)$ and $(\exists x)$
$-(\forall x) P(x)$ is true iff $P(x)$ is true under all interpretations
$-(\exists x) P(x)$ is true iff $P(x)$ is true under some interpretation
- Model: an interpretation of a set of sentences such that every sentence is True
- A sentence is
-satisfiable if it is true under some interpretation
-valid if it is true under all possible interpretations
-inconsistent if there does not exist any interpretation under which the sentence is true
- Logical consequence: $\mathrm{S} \mid=\mathrm{X}$ if all models of S are also models of X

Axioms, definitions and theorems

- Axioms: facts and rules that capture the (important) facts and concepts about a domain; axioms can be used to prove theorems
- Mathematicians dislike unnecessary (dependent) axioms, i.e. ones that can be derived from others
- Dependent axioms can make reasoning faster, however
- Choosing a good set of axioms is a design problem
- A definition of a predicate is of the form " $p(X) \leftrightarrow \ldots$.." and can be decomposed into two parts
- Necessary description: " $p(x) \rightarrow \ldots$ "
- Sufficient description " $p(x) \leftarrow \ldots$ "
- Some concepts have definitions (triangle) and some do not (person)

More on definitions

Example: define father(x, y) by parent (x, y) and male(x)

- parent(\mathbf{x}, \mathbf{y}) is a necessary (but not sufficient) description of father (x, y)
father $(x, y) \rightarrow \operatorname{parent}(x, y)$
- parent $(\mathbf{x}, \mathbf{y})^{\wedge} \operatorname{male}(\mathbf{x})^{\wedge} \operatorname{age}(\mathbf{x}, 35)$ is a sufficient (but not necessary) description of father(x, y):
father $(x, y) \leftarrow \operatorname{parent}(x, y)^{\wedge} \operatorname{male}(x)^{\wedge} \operatorname{age}(x, 35)$
$\cdot \operatorname{parent}(\mathbf{x}, \mathbf{y})^{\wedge} \operatorname{male}(\mathbf{x})$ is a necessary and sufficient description of father (x, y)
$\operatorname{parent}(\mathrm{x}, \mathrm{y})^{\wedge} \operatorname{male}(\mathrm{x}) \leftrightarrow$ father (x, y)

More on definitions

$S(x)$ is a
necessary
condition of $\mathrm{P}(\mathrm{x})$
$S(x)$ is a
sufficient

$(\forall x) \mathrm{P}(\mathrm{x})<=\mathrm{S}(\mathrm{x})$

$$
(\forall x) P(x)=>S(x)
$$

$$
(V X) P(X)<=S(X)
$$

condition of $\mathrm{P}(\mathrm{x})$
$S(x)$ is a
necessary and
sufficient
condition of $\mathrm{P}(\mathrm{x})$

$$
(\forall x) P(x)<=>S(x)
$$

Higher-order logic

- FOL only lets us quantify over variables, and variables can only range over objects
- HOL allows us to quantify over relations, e.g.
"two functions are equal iff they produce the same value for all arguments"
$\forall \mathrm{f} \forall \mathrm{g}(\mathrm{f}=\mathrm{g}) \leftrightarrow(\forall \mathrm{xf}(\mathrm{x})=\mathrm{g}(\mathrm{x}))$
- E.g.: (quantify over predicates)
$\forall \mathrm{r}$ transitive $(\mathrm{r}) \rightarrow(\forall \mathrm{xyz}) \mathrm{r}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{r}(\mathrm{y}, \mathrm{z}) \rightarrow \mathrm{r}(\mathrm{x}, \mathrm{z}))$
- More expressive, but undecidable, in general

Expressing uniqueness

- Often want to say that there is a single, unique object that satisfies a condition
- There exists a unique x such that $\operatorname{king}(x)$ is true
$-\exists \mathrm{x} \operatorname{king}(\mathrm{x}) \wedge \forall \mathrm{y}(\operatorname{king}(\mathrm{y}) \rightarrow \mathrm{x}=\mathrm{y})$
$-\exists \mathrm{x}$ king $(\mathrm{x}) \wedge \neg \exists \mathrm{y}(\operatorname{king}(\mathrm{y}) \wedge \mathrm{x} \neq \mathrm{y})$
$-3!x \operatorname{king}(x)$
- "Every country has exactly one ruler" $-\forall c$ country $(\mathrm{c}) \rightarrow \exists$! r ruler(c, r)
- Iota operator: $\mathrm{tx} \mathrm{P}(\mathrm{x})$ means "the unique x such that $p(x)$ is true"
- "The unique ruler of Freedonia is dead"
$-\operatorname{dead}(\mathrm{x}$ x ruler(freedonia, x$))$

Notational differences

- Different symbols for and, or, not, implies, ...
$-\forall \exists \Rightarrow \Leftrightarrow \wedge \vee \neg \cdot \supset$
$-\mathrm{p} \vee\left(\mathrm{q}^{\wedge} \mathrm{r}\right)$
$-\mathrm{p}+\left(\mathrm{q}^{*} \mathrm{r}\right)$
- Prolog
$\operatorname{cat}(\mathrm{X})$:- furry (X), meows (X), has(X, claws)
- Lispy notations
(forall ?x (implies (and (furry ?x)
(meows ?x)
(has ?x claws))
(cat ?x)))

A example of FOL in use

- Semantics of W3C's semantic web stack (RDF, RDFS, OWL) is defined in FOL
- OWL Full is equivalent to FOL
- Other OWL profiles support a subset of FOL and are more efficient
- However, the semantics of schema.org is only defined in natural language text
- ...and Google's knowledge Graph probably
(!) uses probabilities

FOL Summary

- First order logic (FOL) introduces predicates, functions and quantifiers
- More expressive, but reasoning more complex - Reasoning in propositional logic is NP hard, FOL is semi-decidable
- Common AI knowledge representation language -Other KR languages (e.g., OWL) are often defined by mapping them to FOL
- FOL variables range over objects
- HOL variables range over functions, predicates or sentences

