Propositional and First-Order Logic

Chapter 7.4—7.8, 8.1—8.3, 8.5

Logic roadmap overview

- Propositional logic (review)
- Problems with propositional logic
- First-order logic (review)
 - Properties, relations, functions, quantifiers, ...
 - Terms, sentences, wffs, axioms, theories, proofs, ...
- Extensions to first-order logic
- Logical agents
 - Reflex agents
 - Representing change: situation calculus, frame problem
 - Preferences on actions
 - Goal-based agents

Disclaimer

"Logic, like whiskey, loses its beneficial effect when taken in too large quantities."

- Lord Dunsany

Propositional Logic: Review

Big Ideas

- Logic is a great knowledge representation language for many AI problems
- **Propositional logic** is the simple foundation and fine for some AI problems
- First order logic (FOL) is much more expressive as a KR language and more commonly used in AI
- There are many variations: horn logic, higher order logic, three-valued logic, probabilistic logics, etc.

Propositional logic

- Logical constants: true, false
- Propositional symbols: P, Q,... (aka atomic sentences)
- Wrapping parentheses: (...)
- Sentences are combined by **connectives**:
 - ∧ and [conjunction]
 - v or [disjunction]
 - ⇒ implies [implication / conditional]
 - ⇒ is equivalent [biconditional]
 - ¬ not [negation]
- Literal: atomic sentence or negated atomic sentence: P, ¬ P

Examples of PL sentences

- (P ∧ Q) → R

 "If it is hot and humid, then it is raining"
- Q → P

 "If it is humid, then it is hot"
- Q
 "It is humid."
- We're free to choose better symbols, btw:

 Ho = "It is hot"

 Hu = "It is humid"
 - R = "It is raining"

Propositional logic (PL)

- Simple language for showing key ideas and definitions
- User defines set of propositional symbols, e.g., P, Q
- User defines **semantics** of each propositional symbol:
 - P means "It is hot", Q means "It is humid", etc.
- A sentence (well formed formula) is defined as follows:
 - A symbol is a sentence
 - If S is a sentence, then \neg S is a sentence
 - If S is a sentence, then (S) is a sentence
 - If S and T are sentences, then (S ∨ T), (S ∧ T), (S → T), and (S \leftrightarrow T) are sentences
 - A sentence results from a finite number of applications of the rules

Some terms

- The meaning or **semantics** of a sentence determines its **interpretation**
- Given the truth values of all symbols in a sentence, it can be "evaluated" to determine its truth value (True or False)
- A model for a KB is a *possible world* an assignment of truth values to propositional symbols that makes each sentence in the KB True

Model for a KB

- Let the KB be $[P \land Q \rightarrow R, Q \rightarrow P]$
- What are the possible models? Consider all possible assignments of T|F to P, Q and R and check truth tables PQR
 - -FFF: OK
 - -FFT: OK
 - -FTF: NO
 - -FTT: NO
 - -TFF: OK
 - -TFT: OK
 - -TTF: NO
 - -TTT: OK
- If KB is $[P \land Q \rightarrow R, Q \rightarrow P, Q]$, the **only** model is TTT

P: it's hot

Q: it's humid

R: it's raining

More terms

- A valid sentence or tautology is a sentence that's True under all interpretations, no matter what the world is actually like or what the semantics is. Example: "It's raining or it's not raining"
- An inconsistent sentence or contradiction is a sentence that is False under all interpretations. The world is never like what it describes, as in "It's raining and it's not raining."
- P entails Q, written P |= Q, means that whenever P is True, so is Q
 - −In all models in which P is true, Q is also true

Truth tables

- Truth tables are used to define logical connectives
- And to determine when a complex sentence is true given the values of the symbols in it

Truth tables for the five logical connectives

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
False	False	Тпие	False	False	Тrue	True
False	Тrие	Тпие	False	Тпие	Тrие	False
Тrие	False	False	False	True	False	Fal 🛭
Тrue	Тrие	False	True	Тпие	Тrие	Тrue

Example of a truth table used for a complex sentence

	P	Н	$P \lor H$	$(P \vee H) \wedge \neg H$	$((P \lor H) \land \neg H) \Rightarrow P$
l F	alse.	False	False	False	Тrue
F	al se	Тпие	Тrue	False	Тrие
7	Гrие	False	True	Тrие	Тrue
	Гrие	Тпие	Тrие	False	Тrue

On the implies connective: $P \rightarrow Q$

- Note that → is a logical connective
- So $P \rightarrow Q$ is a logical sentence and has a truth value, i.e., is either true or false
- If we add this sentence to the KB, it can be used by an inference rule, <u>Modes Ponens</u>, to derive/infer/prove Q if P is also in the KB
- Given a KB where P=True and Q=True, we can also derive/infer/prove that P→Q is True

$P \rightarrow Q$

- When is $P \rightarrow Q$ true? Check all that apply
 - □ P=Q=true
 - □ P=Q=false
 - ☐ P=true, Q=false
 - ☐ P=false, Q=true

$$P \rightarrow Q$$

- When is $P \rightarrow Q$ true? Check all that apply
 - **☑** P=Q=true
 - P=Q=false
 - ☐ P=true, Q=false
 - P=false, Q=true
- We can get this from the truth table for →
- Note: in FOL it's much harder to prove that a conditional true
 - -Consider proving prime(x) \rightarrow odd(x)

Inference rules

- Logical inference creates new sentences that logically follow from a set of sentences (KB)
- An inference rule is **sound** if every sentence X it produces when operating on a KB logically follows from the KB
 - -i.e., inference rule creates no contradictions
- An inference rule is **complete** if it can produce every expression that logically follows from (is entailed by) the KB.
 - -Note analogy to complete search algorithms

Sound rules of inference

- Here are some examples of sound rules of inference
- Each can be shown to be sound using a truth table

RULE	PREMISE	CONCLUSION
Modus Ponens	$A, A \rightarrow B$	В
And Introduction	A, B	$A \wedge B$
And Elimination	$A \wedge B$	A
Double Negation	$\neg \neg A$	A
Unit Resolution	A ∨ B, ¬B	A
Resolution	$A \lor B, \neg B \lor C$	A v C

Soundness of modus ponens

A	В	$A \rightarrow B$	OK?
True	True	True	V
True	False	False	V
False	True	True	V
False	False	True	V

Resolution

- **Resolution** is a valid inference rule producing a new clause implied by two clauses containing *complementary literals*
 - A literal is an atomic symbol or its negation, i.e., P, ∼P
- Amazingly, this is the only interference rule you need to build a sound and complete theorem prover
 - Based on proof by contradiction and usually called resolution refutation
- The resolution rule was discovered by <u>Alan</u>
 Robinson (CS, U. of Syracuse) in the mid 1960s

Resolution

- A KB is actually a set of sentences all of which are true, i.e., a conjunction of sentences.
- To use resolution, put KB into *conjunctive normal form* (CNF) where each is a disjunction of (one or more) literals (positive or negative atoms)
- Every KB can be put into CNF, it's just a matter of rewriting its sentences using standard tautological rules

$$-(A \rightarrow B) \leftrightarrow (\sim A \lor B)$$

$$-(Av(B \land C)) \leftrightarrow (AvB) \land (AvC)$$

$$-A \wedge B \rightarrow A$$

$$-A \wedge B \rightarrow B$$

Resolution Example

- KB: $[P \rightarrow Q, Q \rightarrow R \land S]$
- KB in CNF: $[\sim P \vee Q, \sim Q \vee R, \sim Q \vee S]$
- Resolve KB(1) and KB(2) producing:

$$\sim P \vee R \quad (i.e., P \rightarrow R)$$

• Resolve KB(1) and KB(3) producing:

$$\sim P \vee S$$
 (i.e., $P \rightarrow S$)

• New KB: $[\sim P \lor Q$, $\sim Q \lor R$, $\sim Q \lor S$, $\sim P \lor R$, $\sim P \lor S$]

Tautologies

$$(A \rightarrow B) \leftrightarrow (\sim A \lor B)$$
$$(A \lor (B \land C)) \leftrightarrow (A \lor B) \land (A \lor C)$$

Soundness of the resolution inference rule

α	β	γ	$\alpha \lor \beta$	$\neg\beta \vee \gamma$	$\alpha \vee \gamma$
False	False	False	False	Тrue	False
False	False	Тпие	False	Тrue	Тrue
False	Тrue	False	Тrue	False	False
<u>False</u>	True	<u>Тпие</u>	<u>True</u>	<u>True</u>	<u>True</u>
True	<u>False</u>	<u>False</u>	True	<u>True</u>	<u>True</u>
<u>True</u>	<u>False</u>	<u>Тпие</u>	<u>True</u>	<u>True</u>	<u>True</u>
Тrue	Тrие	Fal se	Тrие	False	Тrue
<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>Тrие</u>	<u>True</u>

From the rightmost three columns of this truth table, we can see that

$$(\alpha \vee \beta) \wedge (\sim \beta \vee \gamma) \leftrightarrow (\alpha \vee \gamma)$$

is valid (i.e., always true regardless of the truth values assigned to α , β and γ

Soundness of the resolution inference rule

α	β	γ	$\alpha \lor \beta$	$\neg\beta \vee \gamma$	$\alpha \vee \gamma$
False	False	False	False	Тrue	False
False	False	Тпие	False	Тrue	Тrие
False	Тrue	False	Тrue	False	False
<u>False</u>	True	<u>Тпие</u>	<u>True</u>	<u>Тrue</u>	<u>True</u>
True	<u>False</u>	<u>False</u>	True	<u>Тrие</u>	True
<u>True</u>	<u>False</u>	<u>Тпие</u>	<u>True</u>	<u>Тrие</u>	<u>True</u>
Тrue	Тrue	False	Тrие	False	Тrue
<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>Тrие</u>	<u>True</u>

From the rightmost three columns of this truth table, we can see that

$$(\alpha \vee \beta) \wedge (\sim \beta \vee \gamma) \rightarrow (\alpha \vee \gamma)$$

is valid (i.e., always true regardless of the truth values assigned to α , β and γ

Proving things

- A **proof** is a sequence of sentences, where each is a premise (i.e., a given) or is derived from earlier sentences in the proof by an inference rule
- The last sentence is the **theorem** (also called goal or query) that we want to prove
- Example for the "weather problem"

```
"It's humid"
1 Hu
                premise
                                        "If it's humid, it'shot"
                premise
2 Hu→Ho
                                        "It's hot"
                modus ponens(1,2)
3 Ho
                                        "If it's hot & humid, it's raining"
4 (Ho \land Hu) \rightarrow R premise
                and introduction(1,3) "It's hot and humid"
5 HonHu
                                        "It's raining"
6 R
                 modus ponens(4,5)
```

Horn* sentences

• A Horn sentence or Horn clause has the form:

```
P1 \land P2 \land P3 ... \land Pn \rightarrow Qm where n \ge 0, m in\{0,1\}
```

- Note: a conjunction of 0 or more symbols to left of
 - \rightarrow and 0-1 symbols to right
- Special cases:
 - -n=0, m=1: P (assert P is true)
 - -n>0, m=0: $P \wedge Q \rightarrow$ (constraint: both P and Q can't be true)
 - -n=0, m=0: (well, there is nothing there!)
- Put in CNF: each sentence is a disjunction of literals with at most one non-negative literal

$$\neg P1 \lor \neg P2 \lor \neg P3 \dots \lor \neg Pn \lor Q$$

$$(P \to Q) = (\neg P \lor Q)$$

Significance of Horn logic

- We can also have horn sentences in FOL
- Reasoning with horn clauses is much simpler
 - -Satisfiability of a propositional KB (i.e., finding values for a symbols that will make it true) is NP complete
 - -Restricting KB to horn sentences, satisfiability is in P
- For this reason, FOL Horn sentences are the basis for many rule-based languages, including Prolog and Datalog
- Horn logic gives up handling, in a general way, (1) negation and (2) disjunctions

Entailment and derivation

• Entailment: KB |= Q

- Q is entailed by KB (set sentences) iff there is no logically possible world where Q is false while all the sentences in KB are true
- -Or, stated positively, Q is entailed by KB iff the conclusion is true in every logically possible world in which all the premises in KB are true

Derivation: KB |- Q

 We can derive Q from KB if there's a proof consisting of a sequence of valid inference steps starting from the premises in KB and resulting in Q

Two important properties for inference

Soundness: If KB |- Q then KB |= Q

- -If Q is derived from KB using a given set of rules of inference, then Q is entailed by KB
- Hence, inference produces only real entailments,
 or any sentence that follows deductively from
 the premises is valid

Completeness: If KB |= Q then KB |- Q

- -If Q is entailed by KB, then Q can be derived from KB using the rules of inference
- -Hence, inference produces all entailments, or all valid sentences can be proved from the premises

Problems with Propositional Logic

Propositional logic: pro and con

Advantages

- -Simple KR language sufficient for some problems
- -Lays the foundation for higher logics (e.g., FOL)
- -Reasoning is decidable, though NP complete, and efficient techniques exist for many problems

Disadvantages

- -Not expressive enough for most problems
- -Even when it is, it can very "un-concise"

PL is a weak KR language

- Hard to identify "individuals" (e.g., Mary, 3)
- Can't directly talk about properties of individuals or relations between individuals (e.g., "Bill is tall")
- Generalizations, patterns, regularities can't easily be represented (e.g., "all triangles have 3 sides")
- First-Order Logic (FOL) is expressive enough to represent this kind of information using relations, variables and quantifiers, e.g.,
 - Every elephant is gray: $\forall x \text{ (elephant}(x) \rightarrow \text{gray}(x))$
 - There is a white alligator: $\exists x (alligator(X) \land white(X))$

PL Example

- Consider the problem of representing the following information:
 - Every person is mortal.
 - Confucius is a person.
 - Confucius is mortal.
- How can these sentences be represented so that we can infer the third sentence from the first two?

PL Example

• In PL we have to create propositional symbols to stand for all or part of each sentence, e.g.:

• The above 3 sentences are represented as:

$$P \rightarrow Q; R \rightarrow P; R \rightarrow Q$$

- The 3rd sentence is entailed by the first two, but we need an explicit symbol, R, to represent an individual, Confucius, who is a member of the classes *person* and *mortal*
- Representing other individuals requires introducing separate symbols for each, with some way to represent the fact that all individuals who are "people" are also "mortal"

Hunt the Wumpus domain

• Some atomic propositions:

S12 = There is a stench in cell (1,2)

B34 = There is a breeze in cell (3,4)

W22 = Wumpus is in cell (2,2)

V11 = We've visited cell (1,1)

OK11 = Cell(1,1) is safe

. . .

1,4	2,4	3,4	4,4
1,3 W!	2,3	3,3	4,3
1,2 S OK	2,2 OK	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1

= Agent

OK = Safe square
P = Pit

= Stench = Visited

W = Wumpus

= Glitter, Gold

• Some rules:

 $\neg S22 \rightarrow \neg W12 \land \neg W23 \land \neg W32 \land \neg W21$

 $S22 \rightarrow W12 \vee W23 \vee W32 \vee W21$

 $B22 \rightarrow P12 \vee P23 \vee P32 \vee P21$

 $W22 \rightarrow S12 \land S23 \land S23 \land W21$

 $W22 \rightarrow \neg W11 \land \neg W21 \land \dots \neg W44$

 $A22 \rightarrow V22$

 $A22 \rightarrow \neg W11 \land \neg W21 \land \dots \neg W44$

 $V22 \rightarrow OK22$

Hunt the Wumpus domain

- Eight variables for each cell: e.g., A11, B11, G11, OK11, P11, S11, V11, W11
- The lack of variables requires us to give similar rules for each cell!
- Ten rules (I think) for each

A11 →	$W11 \rightarrow \dots$
V11 →	$\neg W11 \rightarrow \dots$
P11 →	S11 →
	$\neg S11 \rightarrow \dots$
$\neg P11 \rightarrow \dots$	B11 →
	¬B11 →

4	- 4	- 1	
1,4	2,4	3,4	4,4
1			
1			
1			
1,3	2,3	3,3	4,3
W:	l - '-	_ '-	' ' -
1			
1			
1			
1,2	2,2	3,2	4,2
A S	- '-	ا ا	' · *
ا ا			
ок	OK		
1,1	2,1	3,1	4,1
I'''	B	P!	l '''
v	v		
	ı		
ок	OK		

= Glitter, Gold

OK = Safe square

= Stench = Visited = Wumpus

After third move

- We can prove that the Wumpus is in (1,3) using these four rules
- See R&N section 7.5

1,4	2,4	3,4	4,4
1,3 W !	2,3	3,3	4,3
1,2 A S OK	2,2 OK	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1

B = Breeze

G = Glitter, Gold

OK = Safe square

P = Pit

S = Stench

V = Visited

W = Wumpus

$$(R1)$$
 ¬S11 → ¬W11 \land ¬ W12 \land ¬ W21
 $(R2)$ ¬ S21 → ¬W11 \land ¬ W21 \land ¬ W22 \land ¬ W31
 $(R3)$ ¬ S12 → ¬W11 \land ¬ W12 \land ¬ W22 \land ¬ W13
 $(R4)$ S12 → W13 \lor W12 \lor W22 \lor W11

Proving W13

- $(R1) \neg S11 \rightarrow \neg W11 \land \neg W12 \land \neg W21$
- $(R2) \neg S21 \rightarrow \neg W11 \land \neg W21 \land \neg W22 \land \neg W31$
- $(R3) \neg S12 \rightarrow \neg W11 \land \neg W12 \land \neg W22 \land \neg W13$
- (R4) $S12 \rightarrow W13 \lor W12 \lor W22 \lor W11$

Apply MP with $\neg S11$ and R1:

$$\neg$$
 W11 \land \neg W12 \land \neg W21

Apply And-Elimination to this, yielding 3 sentences:

Apply MP to ~S21 and R2, then apply And-elimination:

Apply MP to S12 and R4 to obtain:

Apply Unit Resolution on (W13 v W12 v W22 v W11) and ¬W11:

$$W13 \vee W12 \vee W22$$

Apply Unit Resolution with (W13 v W12 v W22) and ¬W22:

Apply Unit Resolution with (W13 \vee W12) and \neg W12:

W13

QED

Propositional Wumpus hunter problems

- Lack of variables prevents stating more general rules
 - $\forall x, y \ V(x,y) \rightarrow OK(x,y)$
 - \forall x, y $S(x,y) \rightarrow W(x-1,y) \lor W(x+1,y) ...$
- Change of the KB over time is difficult to represent
 - -In classical logic, a fact is true or false for all time
 - A standard technique is to index dynamic facts with the time when they're true
 - A(1, 1, t0)
 - -Thus we have a separate KB for every time point

Propositional logic summary

- Inference: process of deriving new sentences from old
 - Sound inference derives true conclusions given true premises
 - Complete inference derives all true conclusions from a set of premises
- Valid sentence: true in all worlds under all interpretations
- If an implication sentence can be shown to be valid, then, given its premise, its consequent can be derived
- Different logics make different **commitments** about what the world is made of and the kind of beliefs we can have
- **Propositional logic** commits only to the existence of facts that may or may not be the case in the world being represented
 - Simple syntax and semantics suffices to illustrate the process of inference
 - Propositional logic can become impractical, even for very small worlds