Adversarial Search Aka Games

Chapter 6

Some material adopted from notes
by Charles R. Dyer, University of
Wisconsin-Madison

Overview

- Game playing
- State of the art and resources
- Framework
- Game trees
- Minimax
- Alpha-beta pruning
- Adding randomness

Why study games?

- Interesting, hard problems that require minimal "initial structure"
- Clear criteria for success
- A way to study problems involving \{hostile, adversarial, competing\} agents and the uncertainty of interacting with the natural world
- People have used them to asses their intelligence
- Fun, good, easy to understand, PR potential
- Games often define very large search spaces
-chess 35^{100} nodes in search tree, 10^{40} legal states

State of the art

- Chess:
- Deep Blue beat Gary Kasparov in 1997
- Garry Kasparav vs. Deep Junior (Feb 2003): tie!
- Kasparov vs. X3D Fritz (November 2003): tie!
- Checkers: Chinook is the world champion
- Checkers: has been solved exactly - it's a draw!
- Go: Computers starting to achieve expert level
- Bridge: Expert computer players exist, but no world champions yet
- Poker: Poki regularly beats human experts
- Check out the U. Alberta Games Group

Chinook

- Chinook is the World Man-Machine Checkers Champion, developed by researchers at the University of Alberta
- It earned this title by competing in human tournaments, winning the right to play for the (human) world championship, and eventually defeating the best players in the world
- Play Chinook online
- One Jump Ahead: Challenging Human Supremacy in Checkers, Jonathan Schaeffer, 1998
- See Checkers Is Solved, J. Schaeffer, et al., Science, v317, n5844, pp1518-22, AAAS, 2007.

Red to play

Chess early days

- 1948: Norbert Wiener's Cybernetics describes how a chess program could be developed using a depthlimited minimax search with an evaluation function
- 1950: Claude Shannon publishes Programming a Computer for Playing Chess
- 1951: Alan Turing develops on paper the first program capable of playing a full game of chess
- 1962: Kotok and McCarthy (MIT) develop first program to play credibly
- 1967: Mac Hack Six, by Richard Greenblatt et al. (MIT) defeats a person in regular tournament play

Ratings of human \& computer chess champions

Chess Grand Master Garry Kasparov, left, comtemplates his next move against IBM's Deep Blue chess computer while Chung-Jen Tan, manager of the Deep Blue project looks on iduring the first game of a six-game rematch between Kasparov and Deep Blue in this file photo from 1997. The computer program made history by becoming the first to beat a world chess champion, Kasparov, at a serious game. Photo: Adam Nadel/Associated Press

Othello: Murakami vs. Logistello

open sourced

Takeshi Murakami
World Othello Champion

- 1997: The Logistello software crushed Murakami, 6 to 0
- Humans can not win against it
- Othello, with 10^{28} states, is still not solved

Go: Goemate vs. a young player

Name: Chen Zhixing
Profession: Retired
Computer skills:
self-taught programmer
Author of Goemate (arguably the best Go program available today)

Gave Goemate a 9 stone handicap and still easily beat the program, thereby winning \$15,000

Go: Goemate vs. ??

Name: Chen Zhixing Profession: Retired
Computer skills:
Go has too high a branching factor for existing search techniques
Current and future software must rely on huge databases and patternrecognition techniques
thereby winning \$15,000

How can

 we do it?
Typical simple case for a game

- 2-person game
- Players alternate moves
- Zero-sum: one player's loss is the other's gain
- Perfect information: both players have access to complete information about state of game. No information hidden from either player.
- No chance (e.g., using dice) involved
- Examples: Tic-Tac-Toe, Checkers, Chess, Go, Nim, Othello
- But not: Bridge, Solitaire, Backgammon, Poker, Rock-Paper-Scissors, ...

Can we use ...

- Uninformed search?
- Heuristic search?
- Local search?
- Constraint based search?

How to play a game

- A way to play such a game is to:
-Consider all the legal moves you can make
-Compute new position resulting from each move
-Evaluate each to determine which is best
-Make that move
- Wait for your opponent to move and repeat
- Key problems are:
-Representing the "board" (i.e., game state)
-Generating all legal next boards
-Evaluating a position

Evaluation function

- Evaluation function or static evaluator used to evaluate the "goodness" of a game position
- Contrast with heuristic search where evaluation function is non-negative estimate of cost from start node to goal passing through given node
- Zero-sum assumption permits single function to describe goodness of board for both players
$-\mathbf{f}(\mathbf{n}) \gg 0$: position n good for me; bad for you
$-\mathbf{f}(\mathbf{n}) \ll \mathbf{0}$: position n bad for me; good for you
$-\mathbf{f}(\mathbf{n})$ near 0 : position n is a neutral position
$-\mathbf{f}(\mathbf{n})=+$ infinity: win for me
$-\mathbf{f}(\mathbf{n})=$-infinity: win for you

Evaluation function examples

- For Tic-Tac-Toe
$\mathrm{f}(\mathrm{n})=$ [\# my open 3lengths] - [\# your open 3lengths]
Where 3length is complete row, column, or diagonal
- Alan Turing's function for chess
$-\mathbf{f}(\mathbf{n})=\mathbf{w}(\mathbf{n}) / \mathbf{b}(\mathbf{n})$ where $\mathrm{w}(\mathrm{n})=$ sum of the point value of white's pieces and $b(n)=$ sum of black's
-Traditional piece values are -- Pawn:1; Knight, bishop: 3; Rook: 5; Queen: 9

Evaluation function examples

- Most evaluation functions specified as a weighted sum of positive features

$$
\mathrm{f}(\mathrm{n})=\mathrm{w}_{1} * \text { feat }_{1}(\mathrm{n})+\mathrm{w}_{2} * \text { feat }_{2}(\mathrm{n})+\ldots+\mathrm{w}_{\mathrm{n}}{ }^{*} \text { feat }_{\mathrm{k}}(\mathrm{n})
$$

- Example features for chess are piece count, piece values, piece placement, squares controlled, etc.
- IBM's chess program Deep Blue had $>8 \mathrm{~K}$ features in its evaluation function

That's not how people play

- People use look ahead
i.e., enumerate actions, consider opponent's possible responses, REPEAT
- Producing a complete game tree is only possible for simple games
- So, generate a partial game tree for some number of plys
- Move $=$ each player takes a turn
-Ply = one player's turn
- What do we do with the game tree?

- We can easily imagine generating a complete game tree for Tic-Tac-Toe
- Taking board symmet-ries into account, there are 138 terminal positions
- 91 wins for $\mathrm{X}, 44$ for O and 3 draws

Game trees

- Problem spaces for typical games are trees
- Root node is current board configuration; player must decide best single move to make next
- Static evaluator function rates board position f(board):real, >0 for me; <0 for opponent
- Arcs represent possible legal moves for a player
- If my turn to move, then root is labeled a "MAX" node; otherwise it's a "MIN" node
- Each tree level's nodes are all MAX or all MIN; nodes at level i are of opposite kind from those at level i+1

Game Tree for Tic-Tac-Toe

Minimax procedure

- Create MAX node with current board configuration
- Expand nodes to some depth (a.k.a. ply) of lookahead in game
- Apply evaluation function at each leaf node
- Back up values for each non-leaf node until value is computed for the root node
- At MIN nodes, backed-up value is minimum of values associated with its children.
- At MAX nodes, backed-up value is maximum of values associated with its children.
- Pick operator associated with child node whose backed-up value determined value at the root

Minimax theorem

- Intuition: assume your opponent is at least as smart as you and play accordingly
- If she's not, you can only do better!
- Von Neumann, J: Zur Theorie der Gesellschaftsspiele Math. Annalen. 100 (1928) 295-320
For every 2-person, 0 -sum game with finite strategies, there is a value V and a mixed strategy for each player, such that (a) given player 2's strategy, the best payoff possible for player 1 is V , and (b) given player 1's strategy, the best payoff possible for player 2 is -V .
- You can think of this as:
-Minimizing your maximum possible loss
-Maximizing your minimum possible gain

Minimax Algorithm

Partial Game Tree for Tic-Tac-Toe

$\operatorname{MAX}(X)$

$\mathrm{MIN}(\mathrm{O})$

$f(n)=+1$ if position a win for X
$f(n)=-1$ if position a win for O
$f(n)=0$ if position a draw

Why use backed-up values?

- Intuition: if evaluation function is good, doing look ahead and backing up values with Minimax should be better
- Non-leaf node N's backed-up value is value of best state that MAX can reach at depth \mathbf{h} if MIN plays well
- "well" : same criterion as MAX applies to itself
- If e is good, then backed-up value is better estimate of STATE(N) goodness than e(STATE(N))
- We use a lookup horizon \mathbf{h} because time to compute a move is limited

Minimax Tree

MAX

$\mathrm{M} \mid \mathrm{N}$

Is that all there is to simple games?

Alpha-beta pruning

- Improve on performance of the minimax algorithm through alpha-beta pruning
- "If you have an idea that is surely bad, don't take the time to see how truly awful it is " -Pat Winston

- We don't need to compute the value at this node
- No matter what it is, it can't affect value of the root node

Alpha-beta pruning

- Traverse search tree in depth-first order
- At MAX node n, alpha(n) = max value found so far
- At MIN node n, beta(n) = min value found so far - Alpha values start at $-\infty$ and only increase, while beta values start at $+\infty$ and only decrease
- Beta cutoff: Given MAX node n, cut off search below n (i.e., don't examine any more of n's children) if alpha(n) $>=$ beta(i) for some MIN node ancestor i of n
- Alpha cutoff: stop searching below MIN node n if beta(n) <= alpha(i) for some MAX node ancestor i of n

Alpha-Beta Tic-Tac-Toe Example

Alpha-Beta Tic-Tac-Toe Example

Alpha-Beta Tic-Tac-Toe Example

The beta value of a MIN node is an upper bound on the final backed-up value.
It can never increase

Alpha-Beta Tic-Tac-Toe Example

Alpha-Beta Tic-Tac-Toe Example

Alpha-Beta Tic-Tac-Toe Example

Alpha-beta general example

Alpha-Beta Tic-Tac-Toe Example 2


```
function MAX-VALUE (state, \alpha, \beta)
;; \alpha = best MAX so far; \beta = best MIN
if TERMINAL-TEST (state) then return
    UTILITY(state)
v := -\infty
for each s in SUCCESSORS (state) do
v := MAX (v, MIN-VALUE (s, \alpha, \beta))
if v >= \beta then return v
\alpha := MAX ( }\alpha,v
end
return v
function MIN-VALUE (state, \(\alpha, \beta\) )
if TERMINAL-TEST (state) then return UTILITY(state)
v := \(\infty\)
for each \(s\) in SUCCESSORS (state) do
\(\mathrm{v}:=\mathrm{MIN}(\mathrm{v}, \mathrm{MAX}-\mathrm{VALUE}(\mathrm{s}, \alpha, \beta))\)
    if v <= \alpha then return v
    \beta := MIN ( }\beta,v
end
return v
```

Alpha-beta algorithm

Effectiveness of alpha-beta

- Alpha-beta guaranteed to compute same value for root node as minimax, but with \leq computation
- Worst case: no pruning, examine b^{d} leaf nodes, where nodes have b children \& d-ply search is done
- Best case: examine only $(2 b)^{d / 2}$ leaf nodes
- You can search twice as deep as minimax!
-Occurs if each player's best move is 1 st alternative
- In Deep Blue's alpha-beta pruning, average branching factor at node was ~ 6 instead of ~ 35 !

Other Improvements

- Adaptive horizon + iterative deepening
- Extended search: retain $\mathrm{k}>1$ best paths (not just one) extend tree at greater depth below their leaf nodes to help dealing with "horizon effect"
- Singular extension: If move is obviously better than others in node at horizon h, expand it
- Use transposition tables to deal with repeated states
- Null-move search: assume player forfeits move; do a shallow analysis of tree; result must surely be worse than if player had moved. Can be used to recognize moves that should be explored fully.

