
Adversarial Search
Aka Games

Chapter 6

Some material adopted from notes
by Charles R. Dyer, University of

Wisconsin-Madison

Overview

• Game playing
– State of the art and resources
– Framework

• Game trees
– Minimax
– Alpha-beta pruning
– Adding randomness

Why study games?
•  Interesting, hard problems that require minimal
“initial structure”

• Clear criteria for success
• A way to study problems involving {hostile,

adversarial, competing} agents and the uncertainty
of interacting with the natural world

• People have used them to asses their intelligence
• Fun, good, easy to understand, PR potential
• Games often define very large search spaces

– chess 35100 nodes in search tree, 1040 legal states

State of the art
• Chess:

– Deep Blue beat Gary Kasparov in 1997
– Garry Kasparav vs. Deep Junior (Feb 2003): tie!
– Kasparov vs. X3D Fritz (November 2003): tie!

• Checkers: Chinook is the world champion
• Checkers: has been solved exactly – it’s a draw!
• Go: Computers starting to achieve expert level
• Bridge: Expert computer players exist, but no

world champions yet
• Poker: Poki regularly beats human experts
• Check out the U. Alberta Games Group

Chinook
• Chinook is the World Man-Machine Checkers

Champion, developed by researchers at the
University of Alberta

• It earned this title by competing in human
tournaments, winning the right to play for the
(human) world championship, and eventually
defeating the best players in the world

• Play Chinook online
• One Jump Ahead: Challenging Human

Supremacy in Checkers, Jonathan Schaeffer,
1998

• See Checkers Is Solved, J. Schaeffer, et al.,
Science, v317, n5844, pp1518-22, AAAS,
2007.

Chess early days
• 1948: Norbert Wiener’s Cybernetics describes how a

chess program could be developed using a depth-
limited minimax search with an evaluation function

• 1950: Claude Shannon publishes Programming a
Computer for Playing Chess

• 1951: Alan Turing develops on paper the first
program capable of playing a full game of chess

• 1962: Kotok and McCarthy (MIT) develop first
program to play credibly

• 1967: Mac Hack Six, by Richard Greenblatt et al.
(MIT) defeats a person in regular tournament play

Ratings of human & computer chess champions

1997

1997

Othello: Murakami vs. Logistello

Takeshi Murakami
World Othello Champion

•  1997: The Logistello software crushed Murakami, 6 to 0
•  Humans can not win against it
•  Othello, with 1028 states, is still not solved

open sourced

Go: Goemate vs. a young player

Name: Chen Zhixing
Profession: Retired
Computer skills:

 self-taught programmer
Author of Goemate (arguably the

 best Go program available today)

Gave Goemate a 9 stone
handicap and still easily
beat the program,
thereby winning $15,000

Jonathan Schaeffer

Go: Goemate vs. ??
Name: Chen Zhixing
Profession: Retired
Computer skills:

 self-taught programmer
Author of Goemate (arguably the

 strongest Go programs)

Gave Goemate a 9 stone
handicap and still easily
beat the program,
thereby winning $15,000

Jonathan Schaeffer

Go has too high a branching factor
for existing search techniques

Current and future software must
rely on huge databases and pattern-
recognition techniques

How can
we do it?

Typical simple case for a game
• 2-person game
• Players alternate moves
• Zero-sum: one player’s loss is the other’s gain
• Perfect information: both players have access to

complete information about state of game. No
information hidden from either player.

• No chance (e.g., using dice) involved
• Examples: Tic-Tac-Toe, Checkers, Chess, Go, Nim,

Othello
• But not: Bridge, Solitaire, Backgammon, Poker,

Rock-Paper-Scissors, ...

Can we use …

• Uninformed search?
• Heuristic search?
• Local search?
• Constraint based search?

How to play a game
• A way to play such a game is to:

– Consider all the legal moves you can make
– Compute new position resulting from each move
– Evaluate each to determine which is best
– Make that move
– Wait for your opponent to move and repeat

• Key problems are:
– Representing the “board” (i.e., game state)
– Generating all legal next boards
– Evaluating a position

Evaluation function
• Evaluation function or static evaluator used to

evaluate the “goodness” of a game position
– Contrast with heuristic search where evaluation function is

non-negative estimate of cost from start node to goal passing
through given node

• Zero-sum assumption permits single function to
describe goodness of board for both players
– f(n) >> 0: position n good for me; bad for you
– f(n) << 0: position n bad for me; good for you
– f(n) near 0: position n is a neutral position
– f(n) = +infinity: win for me
– f(n) = -infinity: win for you

Evaluation function examples

• For Tic-Tac-Toe
f(n) = [# my open 3lengths] - [# your open 3lengths]
Where 3length is complete row, column, or diagonal

• Alan Turing’s function for chess

– f(n) = w(n)/b(n) where w(n) = sum of the point
value of white’s pieces and b(n) = sum of black’s

– Traditional piece values are -- Pawn:1; Knight,
bishop: 3; Rook: 5; Queen: 9

Evaluation function examples

• Most evaluation functions specified as a
weighted sum of positive features
f(n) = w1*feat1(n) + w2*feat2(n) + ... + wn*featk(n)

• Example features for chess are piece count,
piece values, piece placement, squares
controlled, etc.

• IBM’s chess program Deep Blue had >8K
features in its evaluation function

That’s not how people play
• People use look ahead

i.e., enumerate actions, consider opponent’s
possible responses, REPEAT

• Producing a complete game tree is only
possible for simple games

• So, generate a partial game tree for some
number of plys
– Move = each player takes a turn
– Ply = one player’s turn

• What do we do with the game tree?

• We can easily imagine
generating a complete
game tree for Tic-Tac-Toe

• Taking board symmet-ries
into account, there are
138 terminal positions

•  91 wins for X, 44 for O
and 3 draws

Game trees
• Problem spaces for typical games are trees
• Root node is current board configuration; player

must decide best single move to make next
• Static evaluator function rates board position

f(board):real, >0 for me; <0 for opponent
• Arcs represent possible legal moves for a player
•  If my turn to move, then root is labeled a "MAX"

node; otherwise it’s a "MIN" node
• Each tree level’s nodes are all MAX or all MIN;

nodes at level i are of opposite kind from those at
level i+1

Game Tree for Tic-Tac-Toe

MAX’s play →

MIN’s play →

Terminal state
(win for MAX) →

Here, symmetries are used to
reduce branching factor

MIN nodes

MAX nodes

Minimax procedure
• Create MAX node with current board configuration
• Expand nodes to some depth (a.k.a. ply) of

lookahead in game
• Apply evaluation function at each leaf node
• Back up values for each non-leaf node until value is

computed for the root node
– At MIN nodes, backed-up value is minimum of values

associated with its children.
– At MAX nodes, backed-up value is maximum of values

associated with its children.

• Pick operator associated with child node whose
backed-up value determined value at the root

Minimax theorem
•  Intuition: assume your opponent is at least as smart as

you and play accordingly
– If she’s not, you can only do better!

• Von Neumann, J: Zur Theorie der Gesellschafts-
spiele Math. Annalen. 100 (1928) 295-320
For every 2-person, 0-sum game with finite strategies, there is
a value V and a mixed strategy for each player, such that (a)
given player 2's strategy, the best payoff possible for player 1
is V, and (b) given player 1's strategy, the best payoff possible
for player 2 is –V.

• You can think of this as:
– Minimizing your maximum possible loss
– Maximizing your minimum possible gain

Minimax Algorithm

2 7 1 8

MAX
MIN

2 7 1 8

2 1

2 7 1 8

2 1

2

2 7 1 8

2 1

2 This is the move
selected by minimax Static evaluator

value

Partial Game Tree for Tic-Tac-Toe

f(n)=+1 if position a win
for X

f(n)=-1 if position a win
for O

f(n)=0 if position a draw

Why use backed-up values?

§ Intuition: if evaluation function is good, doing
look ahead and backing up values with Minimax
should be better

§ Non-leaf node N’s backed-up value is value of
best state that MAX can reach at depth h if MIN
plays well
§  “well” : same criterion as MAX applies to itself

§ If e is good, then backed-up value is better
estimate of STATE(N) goodness than e(STATE(N))

§ We use a lookup horizon h because time to
compute a move is limited

Minimax Tree

MAX node

MIN node

f value
value computed

by minimax

Is that all there is to
simple games?

Alpha-beta pruning
• Improve on performance of the minimax

algorithm through alpha-beta pruning
• “If you have an idea that is surely bad, don't

take the time to see how truly awful it is” --
Pat Winston

2 7 1

=2

>=2

<=1

?

•  We don’t need to compute
the value at this node

•  No matter what it is, it can’t
affect value of the root node

MAX

MAX

MIN

Alpha-beta pruning
• Traverse search tree in depth-first order
• At MAX node n, alpha(n) = max value found so far
• At MIN node n, beta(n) = min value found so far

– Alpha values start at -∞ and only increase, while beta
values start at +∞ and only decrease

• Beta cutoff: Given MAX node n, cut off search below
n (i.e., don’t examine any more of n’s children) if
alpha(n) >= beta(i) for some MIN node ancestor i of n

• Alpha cutoff: stop searching below MIN node n if
beta(n) <= alpha(i) for some MAX node ancestor i of n

Alpha-Beta Tic-Tac-Toe Example

Alpha-Beta Tic-Tac-Toe Example

β = 2

2

The beta value of a MIN
node is an upper bound on
the final backed-up value.
It can never increase

Alpha-Beta Tic-Tac-Toe Example

The beta value of a MIN
node is an upper bound on
the final backed-up value.
It can never increase

1

β = 1

2

Alpha-Beta Tic-Tac-Toe Example

α = 1

The alpha value of a MAX
node is a lower bound on
the final backed-up value.
It can never decrease

1

β = 1

2

Alpha-Beta Tic-Tac-Toe Example

α = 1

1

β = 1

2 -1

β = -1

Alpha-Beta Tic-Tac-Toe Example

α = 1

1

β = 1

2 -1

β = -1

Search can be discontinued below
any MIN node whose beta value is
less than or equal to the alpha value
of one of its MAX ancestors

Alpha-beta general example

3 12 8 2 14 1

3 MIN

MAX 3

2 - prune 14 1 - prune

Alpha-Beta Tic-Tac-Toe Example 2

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

0

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0 -3

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0 -3

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0 -3

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0 -3 3

3

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0 -3 3

3

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

5

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

2

2

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

2

2

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

2

2

0

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

2

2

5

0

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

0

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

0

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

0

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

0

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

0

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

0

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

0

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

0

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

1

1

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

2

2

2

2

1

1

0 5 -3 2 5 -2 3 2 -3 0 3 3 -5 0 1 -3 5 0 1 -5 5 3 2 -3 5

 0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

1

2

2

2

2

1

Alpha-beta
algorithm

function MAX-VALUE (state, α, β)
;; α = best MAX so far; β = best MIN
if TERMINAL-TEST (state) then return
UTILITY(state)

v := -∞
for each s in SUCCESSORS (state) do
 v := MAX (v, MIN-VALUE (s, α, β))
 if v >= β then return v
 α := MAX (α, v)
end
return v

function MIN-VALUE (state, α, β)
if TERMINAL-TEST (state) then return
UTILITY(state)

v := ∞
for each s in SUCCESSORS (state) do
 v := MIN (v, MAX-VALUE (s, α, β))
 if v <= α then return v
 β := MIN (β, v)
end
return v

Effectiveness of alpha-beta
• Alpha-beta guaranteed to compute same value for

root node as minimax, but with ≤ computation
• Worst case: no pruning, examine bd leaf nodes,

where nodes have b children & d-ply search is done
• Best case: examine only (2b)d/2 leaf nodes

–  You can search twice as deep as minimax!
– Occurs if each player’s best move is 1st alternative

• In Deep Blue’s alpha-beta pruning, average
branching factor at node was ~6 instead of ~35!

Other Improvements
§  Adaptive horizon + iterative deepening
§  Extended search: retain k>1 best paths (not just

one) extend tree at greater depth below their leaf
nodes to help dealing with “horizon effect”

§  Singular extension: If move is obviously better
than others in node at horizon h, expand it

§  Use transposition tables to deal with repeated
states

§  Null-move search: assume player forfeits move; do
a shallow analysis of tree; result must surely be
worse than if player had moved. Can be used to
recognize moves that should be explored fully.

