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Overview 

• Game playing 
– State of the art and resources 
– Framework 

• Game trees 
– Minimax 
– Alpha-beta pruning 
– Adding randomness 



Why study games? 
•  Interesting, hard problems that require minimal 
“initial structure” 

• Clear criteria for success 
• A way to study problems involving {hostile, 

adversarial, competing} agents and the uncertainty 
of interacting with the natural world 

• People have used them to asses their intelligence 
• Fun, good, easy to understand, PR potential 
• Games often define very large search spaces 

– chess 35100 nodes in search tree, 1040 legal states 



State of the art 
• Chess:  

– Deep Blue beat Gary Kasparov in 1997 
– Garry Kasparav vs. Deep Junior (Feb 2003): tie!   
– Kasparov vs. X3D Fritz (November 2003): tie!  

• Checkers: Chinook is the world champion 
• Checkers: has been solved exactly – it’s a draw! 
• Go: Computers starting to achieve expert level 
• Bridge: Expert computer players exist, but no 

world champions yet 
• Poker: Poki regularly beats human experts 
• Check out the U. Alberta Games Group 



Chinook 
• Chinook is the World Man-Machine Checkers 

Champion, developed by researchers at the 
University of Alberta 

• It earned this title by competing in human 
tournaments, winning the right to play for the 
(human) world championship, and eventually 
defeating the best players in the world 

• Play Chinook online 
• One Jump Ahead: Challenging Human 

Supremacy in Checkers, Jonathan Schaeffer, 
1998 

• See Checkers Is Solved, J. Schaeffer, et al., 
Science, v317, n5844, pp1518-22, AAAS, 
2007. 



Chess early days 
• 1948: Norbert Wiener’s Cybernetics describes how a 

chess program could be developed using a depth-
limited minimax search with an evaluation function 

• 1950: Claude Shannon publishes Programming a 
Computer for Playing Chess  

• 1951: Alan Turing develops on paper the first 
program capable of playing a full game of chess 

• 1962: Kotok and McCarthy (MIT) develop first 
program to play credibly 

• 1967: Mac Hack Six, by Richard Greenblatt et al. 
(MIT) defeats a person in regular tournament play 



Ratings of human & computer chess champions 



1997 



1997 



Othello: Murakami vs. Logistello 

Takeshi Murakami 
World Othello Champion 

•  1997: The Logistello software crushed Murakami, 6 to 0 
•  Humans can not win against it 
•  Othello, with 1028 states, is still not solved 

open sourced 



Go: Goemate vs. a young player 

Name: Chen Zhixing 
Profession: Retired 
Computer skills:  

 self-taught programmer 
Author of Goemate (arguably the 

 best Go program available today) 
 
Gave Goemate a 9 stone 
handicap and still easily 
beat the program, 
thereby winning $15,000 

Jonathan Schaeffer 



Go: Goemate vs. ?? 
Name: Chen Zhixing 
Profession: Retired 
Computer skills:  

 self-taught programmer 
Author of Goemate (arguably the 

 strongest Go programs) 
 
Gave Goemate a 9 stone 
handicap and still easily 
beat the program, 
thereby winning $15,000 

Jonathan Schaeffer 

Go has too high a branching factor 
for existing search techniques 
 

Current and future software must 
rely on huge databases and pattern-
recognition techniques 



How can 
we do it? 



Typical simple case for a game 
• 2-person game 
• Players alternate moves  
• Zero-sum: one player’s loss is the other’s gain 
• Perfect information: both players have access to 

complete information about state of game.  No 
information hidden from either player. 

• No chance (e.g., using dice) involved  
• Examples: Tic-Tac-Toe, Checkers, Chess, Go, Nim,  

Othello 
• But not: Bridge,  Solitaire, Backgammon, Poker, 

Rock-Paper-Scissors, ... 



Can we use … 

• Uninformed search? 
• Heuristic search? 
• Local search? 
• Constraint based search? 



How to play a game 
• A way to play such a game is to: 

– Consider all the legal moves you can make 
– Compute new position resulting from each move 
– Evaluate each to determine which is best 
– Make that move 
– Wait for your opponent to move and repeat 

• Key problems are: 
– Representing the “board” (i.e., game state) 
– Generating all legal next boards 
– Evaluating a position 



Evaluation function 
• Evaluation function or static evaluator used to 

evaluate the “goodness” of a game position 
– Contrast with heuristic search where evaluation function is  

non-negative estimate of cost from start node to goal passing 
through given node 

• Zero-sum assumption permits single function to 
describe goodness of board for both players 
– f(n)  >> 0: position n good for me; bad for you 
– f(n) << 0:  position n bad for me; good for you 
– f(n) near 0: position n is a neutral position 
– f(n) = +infinity: win for  me 
– f(n) = -infinity: win for you   



Evaluation function examples 

• For Tic-Tac-Toe  
f(n) = [# my open 3lengths] - [# your open 3lengths]  
Where 3length is complete row, column, or diagonal 

 
• Alan Turing’s function for chess 

– f(n) = w(n)/b(n) where w(n) = sum of the point 
value of white’s pieces and b(n) = sum of black’s 

– Traditional piece values are -- Pawn:1; Knight, 
bishop: 3; Rook: 5; Queen: 9 



Evaluation function examples 

• Most evaluation functions specified as a 
weighted sum of positive features 
f(n) = w1*feat1(n) + w2*feat2(n) + ... + wn*featk(n)  

• Example features for chess are piece count, 
piece values, piece placement, squares 
controlled, etc.  

• IBM’s chess program Deep Blue had >8K 
features in its evaluation function 



That’s not how people play 
• People use look ahead 

i.e., enumerate actions, consider opponent’s 
possible responses, REPEAT 

• Producing a complete game tree is only 
possible for simple games 

• So, generate a partial game tree for some 
number of plys 
– Move = each player takes a turn 
– Ply = one player’s turn 

• What do we do with the game tree? 



• We can easily imagine 
generating a complete 
game tree for Tic-Tac-Toe 

• Taking board symmet-ries 
into account, there are 
138 terminal positions 

•  91 wins for X, 44 for O 
and 3 draws 



Game trees 
• Problem spaces for typical games are trees 
• Root node is current board configuration; player 

must decide best single move to make next 
• Static evaluator function rates board position 

f(board):real,  >0 for me; <0 for opponent 
• Arcs represent possible legal moves for a player  
•  If my turn to move, then root is labeled a "MAX" 

node; otherwise it’s a "MIN" node  
• Each tree level’s nodes are all MAX or all MIN; 

nodes at level i are of opposite kind from those at 
level i+1  



Game Tree for Tic-Tac-Toe 

MAX’s play → 

MIN’s play → 

Terminal state 
(win for MAX) → 

Here, symmetries are used to 
reduce branching factor 

MIN nodes 

MAX nodes 



Minimax procedure 
• Create MAX node with current board configuration  
• Expand nodes to some depth (a.k.a. ply) of 

lookahead in game 
• Apply evaluation function at each leaf node  
• Back up values for each non-leaf node until value is 

computed for the root node 
– At MIN nodes, backed-up value is minimum of values 

associated with its children.  
– At MAX nodes, backed-up value is maximum of values 

associated with its children.  

• Pick operator associated with child node whose 
backed-up value determined value at the root  



Minimax theorem 
•  Intuition: assume your opponent is at least as smart as 

you and play accordingly 
– If she’s not, you can only do better! 

• Von Neumann, J: Zur Theorie der Gesellschafts-
spiele Math. Annalen. 100 (1928) 295-320 
For every 2-person, 0-sum game with finite strategies, there is 
a value V and a mixed strategy for each player, such that (a) 
given player 2's strategy, the best payoff possible for player 1 
is V, and (b) given player 1's strategy, the best payoff possible 
for player 2 is –V. 

• You can think of this as: 
– Minimizing your maximum possible loss 
– Maximizing your minimum possible gain 



Minimax Algorithm 

2 7 1 8 

MAX 
MIN 

2 7 1 8 

2 1 

2 7 1 8 

2 1 

2 

2 7 1 8 

2 1 

2 This is the move 
selected by minimax Static evaluator  

value 



Partial Game Tree for Tic-Tac-Toe 

f(n)=+1 if position a win 
for X 

f(n)=-1 if position a win 
for O 

f(n)=0 if position a draw 



Why use backed-up values? 

§ Intuition: if evaluation function is good, doing 
look ahead and backing up values with Minimax 
should be better 

§ Non-leaf node N’s backed-up value is value of 
best state that MAX can reach at depth h if MIN 
plays well 
§  “well” : same criterion as MAX applies to itself 

§ If e is good, then backed-up value is better 
estimate of STATE(N) goodness than e(STATE(N))  

§ We use a lookup horizon h because time to 
compute a move is limited 



Minimax Tree 

MAX node 

MIN node 

f value 
value computed  

by minimax 



Is that all there is to 
simple games? 



Alpha-beta pruning 
• Improve on performance of the minimax 

algorithm through alpha-beta pruning 
• “If you have an idea that is surely bad, don't 

take the time to see how truly awful it is” -- 
Pat Winston  

2 7 1 

=2 

>=2 

<=1 

? 

•  We don’t need to compute 
the value at this node 

•  No matter what it is, it can’t 
affect value of the root node 

MAX 

MAX 

MIN 



Alpha-beta pruning 
• Traverse search tree in depth-first order  
• At MAX node n, alpha(n) = max value found so far 
• At MIN node n, beta(n) = min value found so far 

– Alpha values start at -∞ and only increase, while beta 
values start at +∞ and only decrease 

• Beta cutoff: Given MAX node n, cut off search below 
n (i.e., don’t examine any more of n’s children) if 
alpha(n) >= beta(i) for some MIN node ancestor i of n 

• Alpha cutoff: stop searching below MIN node n if 
beta(n) <= alpha(i) for some MAX node ancestor i of n 



Alpha-Beta Tic-Tac-Toe Example 



Alpha-Beta Tic-Tac-Toe Example 

β = 2 

2 

The beta value of a MIN 
node is an upper bound on 
the final backed-up value. 
It can never increase 



Alpha-Beta Tic-Tac-Toe Example 

The beta value of a MIN 
node is an upper bound on 
the final backed-up value. 
It can never increase 

1 

β = 1 

2 



Alpha-Beta Tic-Tac-Toe Example 

α = 1 

The alpha value of a MAX 
node is a lower bound on 
the final backed-up value. 
It can never decrease 

1 

β = 1 

2 



Alpha-Beta Tic-Tac-Toe Example 

α = 1 

1 

β = 1 

2 -1 

β = -1  



Alpha-Beta Tic-Tac-Toe Example 

α = 1 

1 

β = 1 

2 -1 

β = -1  

Search can be discontinued below 
any MIN node whose beta value is  
less than or equal to the alpha value 
of one of its MAX ancestors 



Alpha-beta general example 

3 12 8 2 14 1 

3 MIN 

MAX 3 

2 - prune 14 1 - prune 



Alpha-Beta Tic-Tac-Toe Example 2 
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Alpha-beta 
algorithm 

function MAX-VALUE (state, α, β) 
;; α = best MAX so far; β = best MIN 
if TERMINAL-TEST (state) then return 
UTILITY(state) 

v := -∞ 
for each s in SUCCESSORS (state) do 
    v := MAX (v, MIN-VALUE (s, α, β)) 
    if v >= β then return v 
    α := MAX (α, v) 
end 
return v 
 
function MIN-VALUE (state, α, β) 
if TERMINAL-TEST (state) then return 
UTILITY(state) 

v := ∞ 
for each s in SUCCESSORS (state) do 
    v := MIN (v, MAX-VALUE (s, α, β)) 
    if v <= α then return v 
    β := MIN (β, v) 
end 
return v 



Effectiveness of alpha-beta 
• Alpha-beta guaranteed to compute same value for 

root node as minimax, but with ≤  computation 
• Worst case: no pruning, examine bd leaf nodes, 

where nodes have b children & d-ply search is done  
• Best case: examine only (2b)d/2 leaf nodes 

–  You can search twice as deep as minimax!  
– Occurs if each player’s best move is 1st alternative   

• In Deep Blue’s alpha-beta pruning, average 
branching factor at node was ~6 instead of ~35! 



Other Improvements 
§  Adaptive horizon + iterative deepening 
§  Extended search: retain k>1 best paths (not just 

one) extend tree at greater depth below their leaf 
nodes to help dealing with “horizon effect” 

§  Singular extension: If move is obviously better 
than others in node at horizon h, expand it 

§  Use transposition tables to deal with repeated 
states 

§  Null-move search: assume player forfeits move; do 
a shallow analysis of tree; result must surely be 
worse than if player had moved.  Can be used to 
recognize moves that should be explored fully. 


