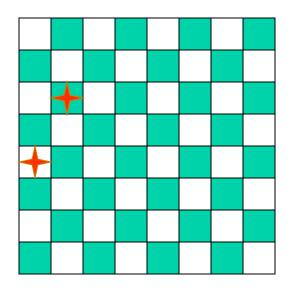


Overview

- Constraint satisfaction is a powerful problemsolving paradigm
 - Problem: set of variables to which we must assign values satisfying problem-specific constraints
 - Constraint programming, constraint satisfaction problems (CSPs), constraint logic programming...
- Algorithms for CSPs
 - -Backtracking (systematic search)
 - Constraint propagation (k-consistency)
 - Variable and value ordering heuristics
 - -Backjumping and dependency-directed backtracking

Motivating example: 8 Queens

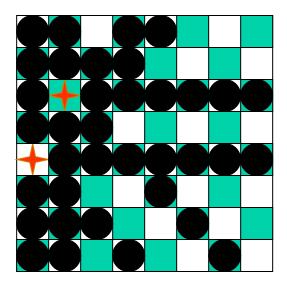
Place 8 queens on a chess board such That none is attacking another.



Generate-and-test, with no redundancies \rightarrow "only" 8⁸ combinations

8**8 is 16,777,216

Motivating example: 8-Queens



After placing these two queens, it's trivial to make the squares we can no longer use

What more do we need for 8 queens?

- Not just a *successor function* and *goal test*
- But also
 - a means to *propagate constraints*imposed by one queen on the others
 an *early failure test*
- → Explicit representation of constraints and constraint manipulation algorithms

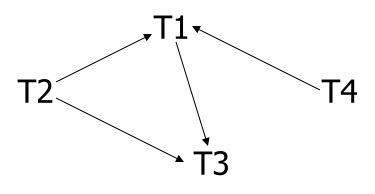
Informal definition of CSP

- CSP (Constraint Satisfaction Problem), given
 - (1) finite set of variables
 - (2) each with domain of possible values (often finite)
 - (3) set of constraints limiting values variables can assume
- Solution is an assignment of a value to each variable such that all constraints are satisfied
- Tasks: decide if a solution exists, find a solution, find all solutions, find "best solution" according to some metric (objective function)

Example: 8-Queens Problem

- Eight variables Xi, i = 1..8 where Xi is the row number of queen in column i
- Domain for each variable {1,2,...,8}
- Constraints are of the forms:
 - No queens on same row
 Xi = k → Xj ≠ k for j = 1..8, j≠i
 No queens on same diagonal
 Xi = ki, Xj = kj → |i-j| ≠ | ki kj| for j = 1..8, j≠i

Example: Task Scheduling

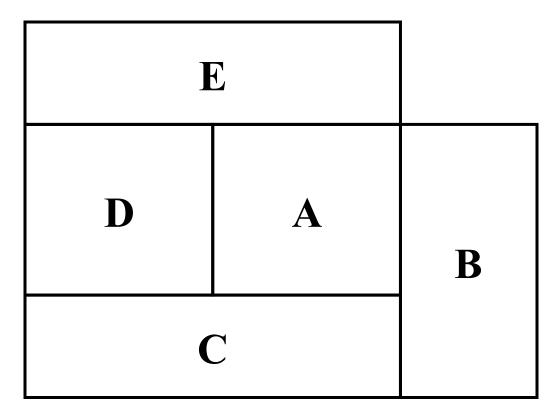


Examples of scheduling constraints:

- T1 must be done during T3
- T2 must be achieved before T1 starts
- T2 must overlap with T3
- T4 must start after T1 is complete

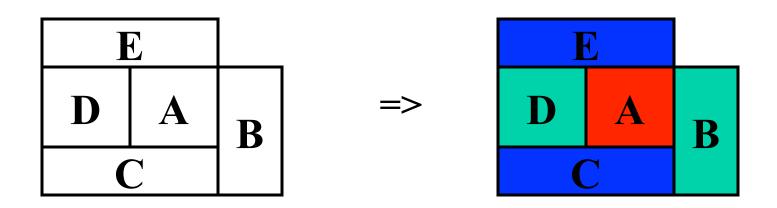
Example: Map coloring

Color this map using three colors (red, green, blue) such that no two adjacent regions have the same color



Map coloring

- Variables: A, B, C, D, E all of domain RGB
- Domains: RGB = {red, green, blue}
- Constraints: $A \neq B$, $A \neq C$, $A \neq E$, $A \neq D$, $B \neq C$, $C \neq D$, $D \neq E$
- A solution: A=red, B=green, C=blue, D=green, E=blue



Brute Force methods

- Finding a solution by a brute force search is easy
 - Generate and test is a weak method
 - Just generate potential combinations and test each
- Potentially very inefficient
 - With n variables where each can have one of 3 values, there are 3ⁿ possible solutions to check
- There are ~190 countries in the world, which we can color using four colors
- 4¹⁹⁰ is a big number!

solve(A,B,C,D,E) :color(A), color(B), color(C), color(D), color(E), not(A=B), not(A=B), not(B=C), not(A=C), not(C=D), not(A=E), not(C=D).

color(red). color(green). color(blue).

4**190 is 2462625387274654950767440006258975862817483704404090416746768337765357610718575663213391640930307227550414249394176L

Example: SATisfiability

- Given a set of logic propositions containing variables, find an assignment of the variables to {false, true} that satisfies them
- For example, the clauses:

$$-(A \lor B \lor \neg C) \land (\neg A \lor D)$$

-(equivalent to $(C \rightarrow A) \vee (B \land D \rightarrow A)$

are satisfied by

A = false, B = true, C = false, D = false

• <u>Satisfiability</u> is known to be NP-complete, so in worst case, solving CSP problems requires exponential time

Real-world problems

CSPs are a good match for many practical problems that arise in the real world

- Scheduling
- Temporal reasoning
- Building design
- Planning
- Optimization/satisfaction
- Vision

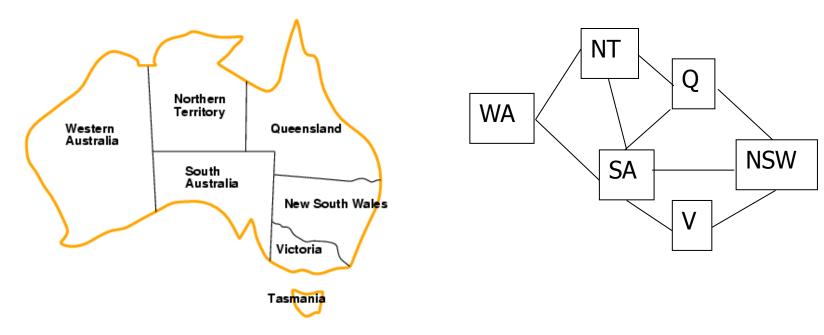
- Graph layout
- Network management
- Natural language processing
- Molecular biology / genomics
- VLSI design

Definition of a constraint network (CN)

- A constraint network (CN) consists of
- Set of variables X = {x₁, x₂, ..., x_n} -with associate domains {d₁,d₂,...,d_n} -domains are typically finite
- Set of constraints $\{c_1, c_2 \dots c_m\}$ where
 - –each defines a predicate that is a relation over a particular subset of variables (X)

-e.g., C_i involves variables $\{X_{i1}, X_{i2}, \dots, X_{ik}\}$ and defines the relation $R_i \subseteq D_{i1} \ge D_{i2} \ge \dots \ge D_{ik}$

Running example: coloring Australia

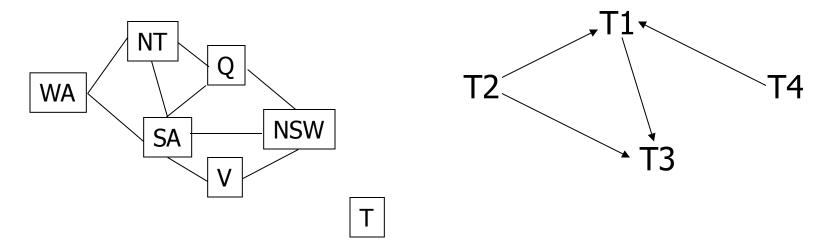


Т

- Seven variables: {WA,NT,SA,Q,NSW,V,T}
- Each variable has same domain: {red, green, blue}
- No two adjacent variables have same value:
 WA≠NT, WA≠SA, NT≠SA, NT≠Q, SA≠Q, SA≠NSW,
 SA≠V,Q≠NSW, NSW≠V

Unary & binary constraints most common

Binary constraints



- Two variables are adjacent or neighbors if connected by an edge or an arc
- Possible to rewrite problems with higher-order constraints as ones with just binary constraints
 - Reification

Formal definition of a CN

- Instantiations
 - -An **instantiation** of a subset of variables S is an assignment of a value in its domain to each variable in S
 - -An instantiation is **legal** iff it does not violate any constraints
- A **solution** is an instantiation of all of the variables in the network

Typical tasks for CSP

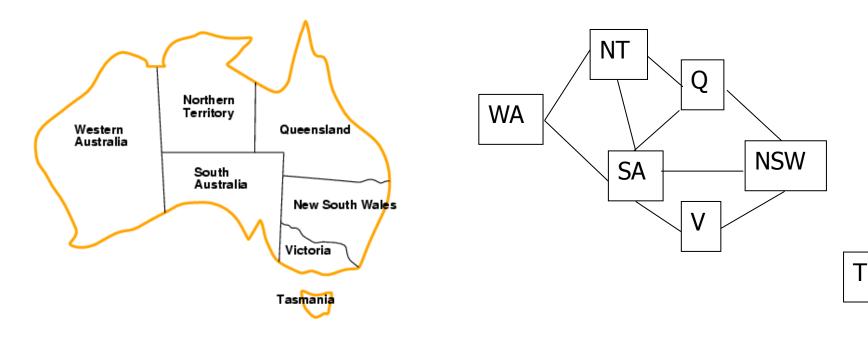
- Solution related tasks:
 - -Does a solution *exist*?
 - -Find one solution
 - -Find all solutions
 - Given a metric on solutions, find the *best* one
 Given a partial instantiation, do any of the above
- Transform the CN into an equivalent CN that is easier to solve

Binary CSP

- A **binary CSP** is a CSP where all constraints are binary or unary
- Any non-binary CSP can be converted into a binary CSP by introducing additional variables
- A binary CSP can be represented as a **constraint graph**, with a node for each variable and an arc between two nodes iff there's a constraint involving the two variables

-Unary constraints appear as self-referential arcs

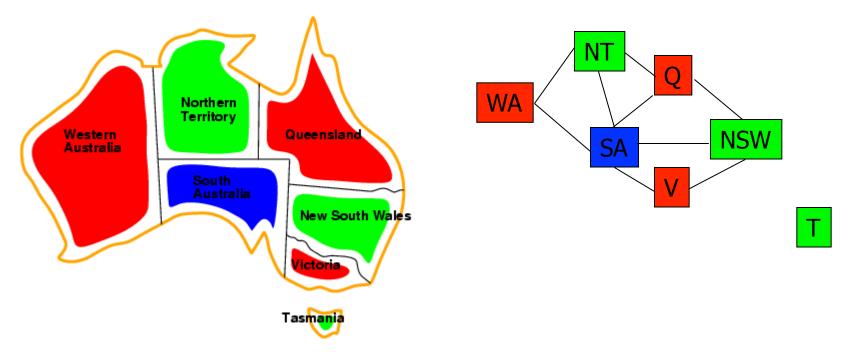
Running example: coloring Australia



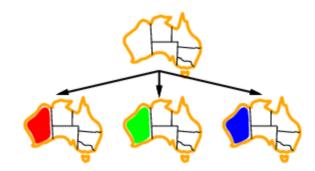
- Seven variables: **{WA,NT,SA,Q,NSW,V,T}**
- Each variable has the same domain: {red, green, blue}
- No two adjacent variables have the same value:

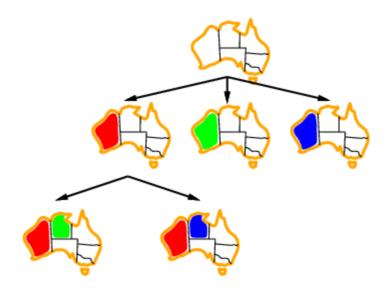
WA≠NT, WA≠SA, NT≠SA, NT≠Q, SA≠Q, SA≠NSW, SA≠V,Q≠NSW, NSW≠V

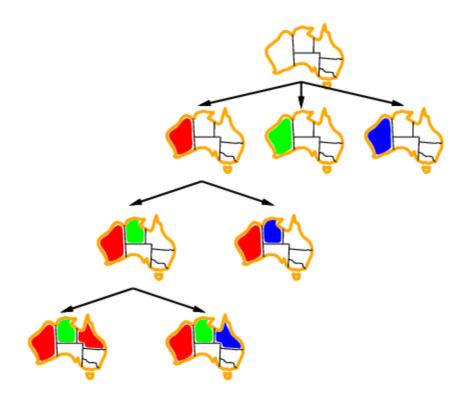
A running example: coloring Australia



- Solutions are complete and consistent assignments
- One of several solutions
- Note that for generality, constraints can be expressed as relations, e.g., WA ≠ NT is (WA,NT) in {(red,green), (red,blue), (green,red), (green,blue), (blue,red),(blue,green)}







Basic Backtracking Algorithm

CSP-BACKTRACKING(PartialAssignment a)

- If a is complete then return a
- $X \leftarrow$ select an unassigned variable
- $D \leftarrow$ select an ordering for the domain of X
- For each value v in D do
 - If v is consistent with a then
 - Add (X=v) to a
 - result \leftarrow CSP-BACKTRACKING(a)
 - If result \neq *failure* then return result
 - Remove (X=v) from a
- Return failure

Start with CSP-BACKTRACKING({})

Note: this is depth first search; can solve n-queens problems for $n\sim 25$

Problems with backtracking

- Thrashing: keep repeating the same failed variable assignments
- Things that can help avoid this:
 - -Consistency checking
 - -Intelligent backtracking schemes
- Inefficiency: can explore areas of the search space that aren't likely to succeed

-Variable ordering can help

Improving backtracking efficiency

Here are some standard techniques to improve the efficiency of backtracking

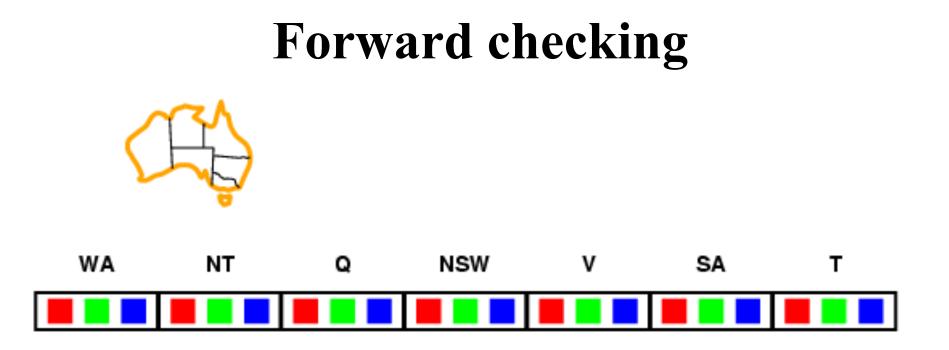
- -Can we detect inevitable failure early?
- -Which variable should be assigned next?
- -In what order should its values be tried?

Forward Checking

After variable X is assigned value v, examine each unassigned variable Y connected to X by a constraint and delete from Y's domain values inconsistent with v

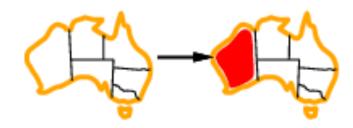


Using *forward checking* and *backward checking* roughly doubles the size of N-queens problems that can be practically solved

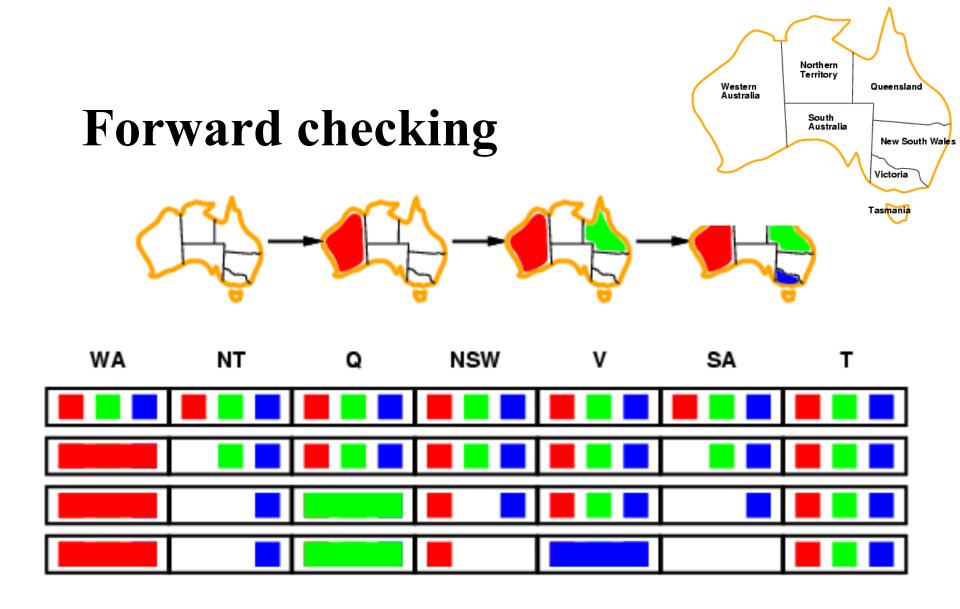


- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

Forward checking



Forward checking



Constraint propagation

• Forward checking propagates info.

Northern Territory

South

Queensland

Victoria

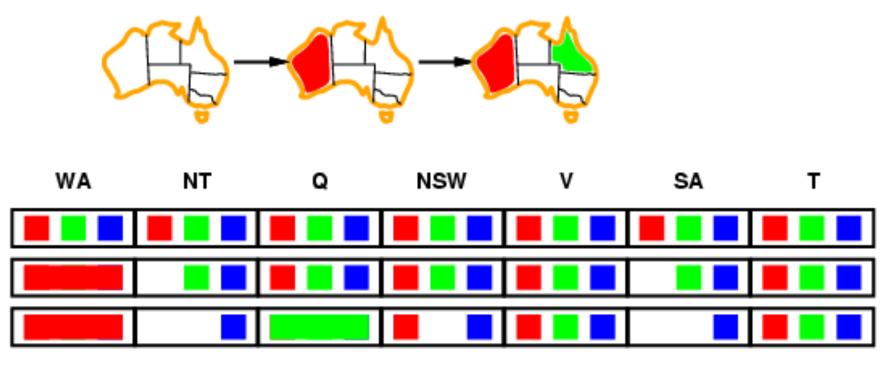
Tasmania

New South Wales

Western

Australia

• NT and SA cannot both be blue!



Definition: Arc consistency

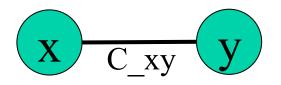
- A constraint C_xy is <u>arc consistent</u> wrt x if for each value v of x there is an allowed value of y
- Similarly define C_xy as arc consistent wrt y
- A binary CSP is arc consistent iff every constraint C_xy is arc consistent wrt x as well as y
- When a CSP is not arc consistent, we can make it arc consistent, e.g., by using AC3 –Also called "enforcing arc consistency"

Arc Consistency Example 1

• Domains

$$-D_x = \{1, 2, 3\}$$

 $-D_y = \{3, 4, 5, 6\}$



- Constraint
 - -Note: for finite domains, we can represent a constraint as an enumeration of legal values

$$-C_xy = \{(1,3), (1,5), (3,3), (3,6)\}$$

• C_xy is not arc consistent wrt x, neither wrt y. By enforcing arc consistency, we get reduced domains

$$-D'_x = \{1, 3\}$$

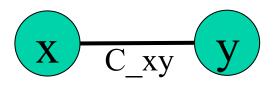
 $-D'_y = \{3, 5, 6\}$

Arc Consistency Example 2

• Domains

$$-D_x = \{1, 2, 3\}$$

 $-D_y = \{1, 2, 3\}$



• Constraint

 $-C_xy =$ lambda v1,v2: v1 < v2

• C_xy is not arc consistent wrt x, neither wrt y. By enforcing arc consistency, we get reduced domains

$$-D'_x = \{1, 2\}$$

 $-D'_y=\{2, 3\}$

Arc consistency

• Simplest form of propagation makes each arc consistent

Northern Territory

> South Australia

Queensland

Victoria

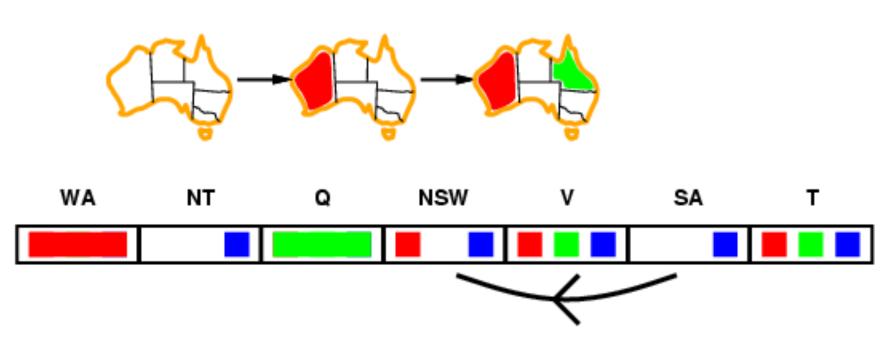
Tasmania

New South Wales

Western

Australia

• $X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y



Arc consistency

• Simplest form of propagation makes each arc consistent

Northern Territory

> South Australia

Queensland

Victoria

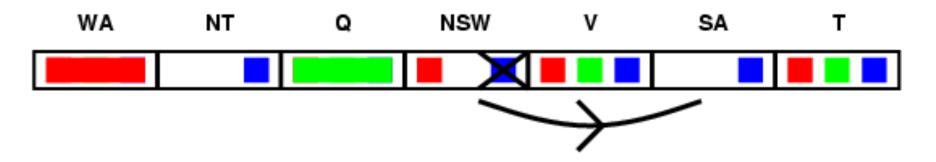
Tasmania

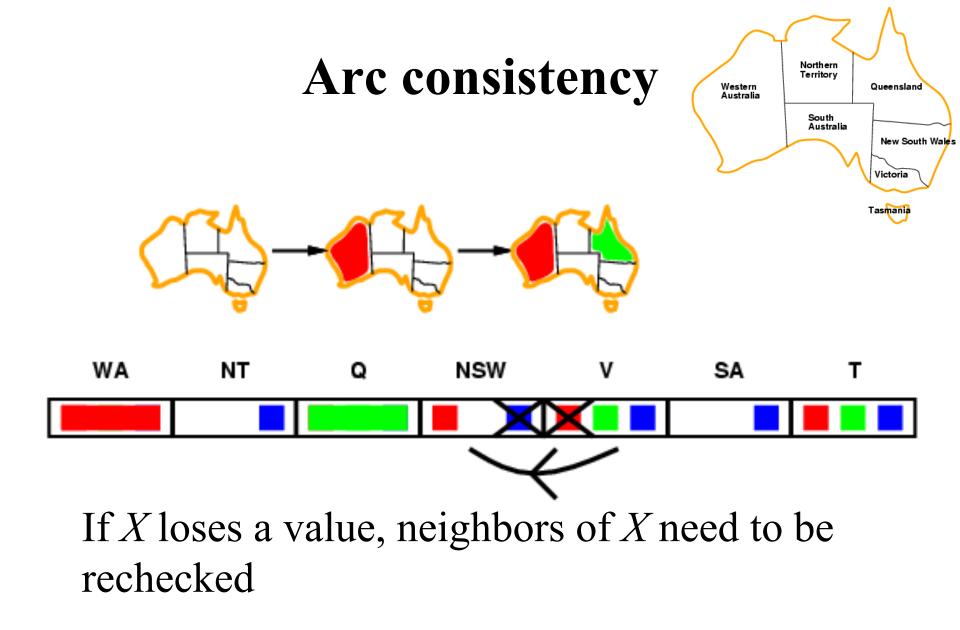
New South Wales

Western

Australia

• $X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y





Arc consistency

Northern

Territory

South Australia Queensland

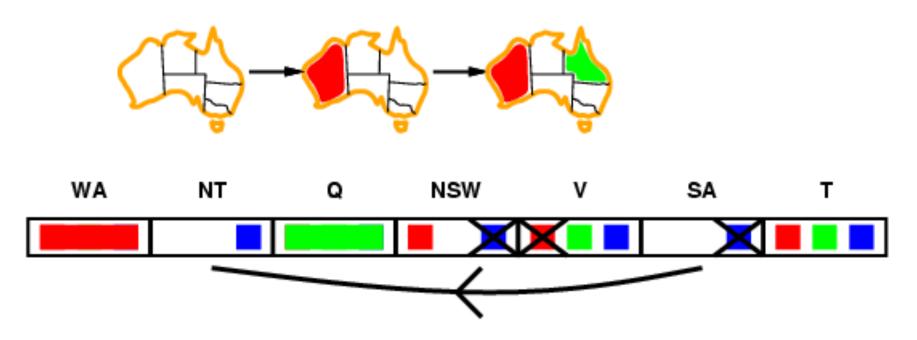
Victoria

Tasmania

New South Wales

Western Australia

- Arc consistency detects failure earlier than simple forward checking
- Can be run as a preprocessor or after each assignment



General CP for Binary Constraints

Algorithm <u>AC3</u>

contradiction \leftarrow *false* $Q \leftarrow$ stack of all variables while Q is not empty and not contradiction do $X \leftarrow UNSTACK(Q)$ For every variable Y adjacent to X do If REMOVE-ARC-INCONSISTENCIES(X,Y) If domain(Y) is non-empty then STACK(Y,Q) else return false

Complexity of AC3

- e = number of constraints (edges)
- d = number of values per variable
- Each variable is inserted in Q up to d times
- REMOVE-ARC-INCONSISTENCY takes O(d²) time
- CP takes O(ed³) time

Improving backtracking efficiency

- Some standard techniques to improve the efficiency of backtracking
 - Can we detect inevitable failure early?
 - Which variable should be assigned next?
 - In what order should its values be tried?
- Combining constraint propagation with these heuristics makes 1000 N-queen puzzles feasible

Most constrained variable

• Most constrained variable:

choose the variable with the fewest legal values

- a.k.a. **minimum remaining values (MRV)** heuristic
- After assigning a value to WA, NT and SA have only two values in their domains – choose one of them rather than Q, NSW, V or T

Most constraining variable

- Tie-breaker among most constrained variables
- Choose variable involved in largest # of constraints on remaining variables

Northern Territory

> South Australia

Queensland

Victoria

Tasmania

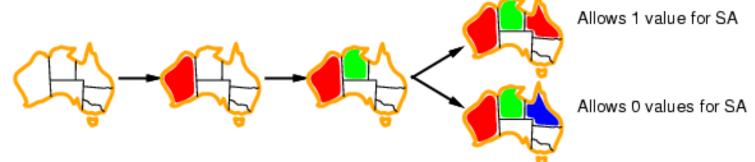
New South Wale

Western Australia

- After assigning SA to be blue, WA, NT, Q, NSW and V all have just two values left.
- WA and V have only one constraint on remaining variables and T none, so choose one of NT, Q & NSW

Least constraining value

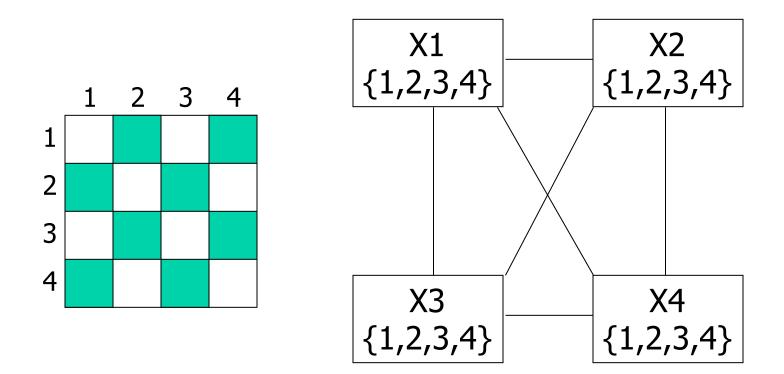
- Given a variable, choose least constraining value:
 - -the one that rules out the fewest values in the remaining variables



- Combining these heuristics makes 1000 queens feasible
- What's an intuitive explanation for this?

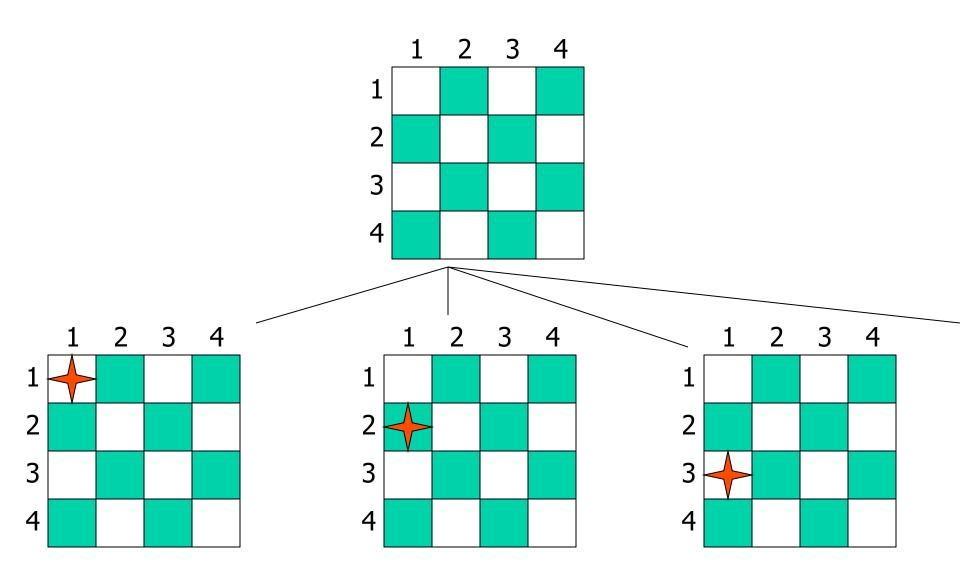
Is AC3 Alone Sufficient?

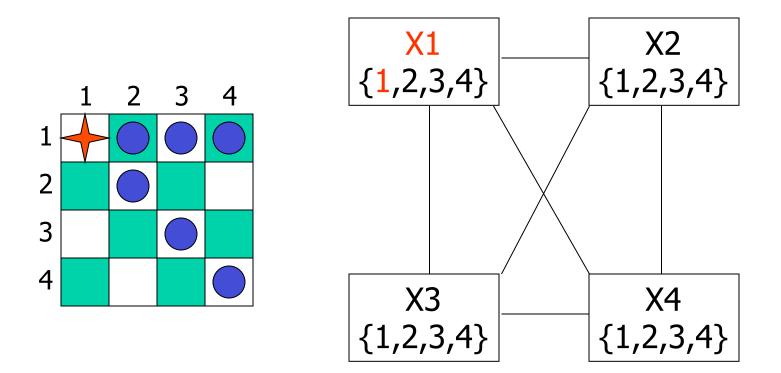
Consider the four queens problem

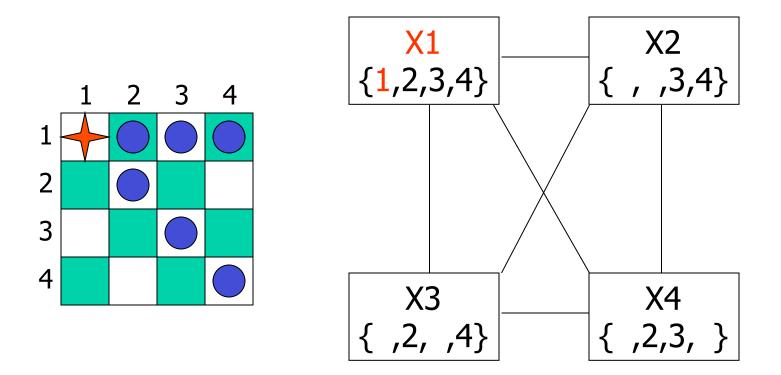


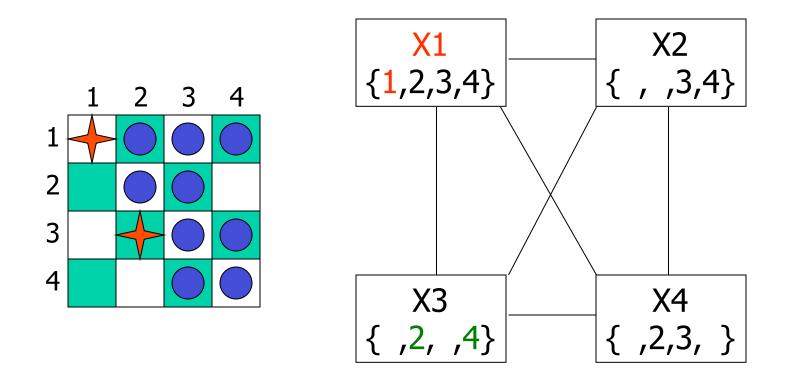
Solving a CSP still requires search

- Search:
 - -can find good solutions, but must examine non-solutions along the way
- Constraint Propagation:
 - -can rule out non-solutions, but this is not the same as finding solutions
- Interweave constraint propagation & search:
 - Perform constraint propagation at each search step

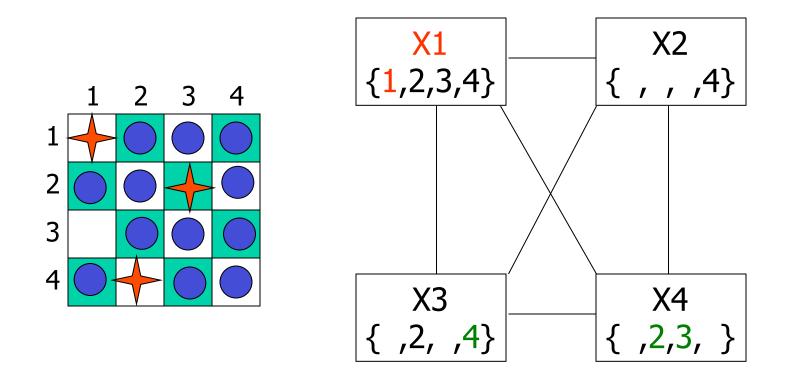




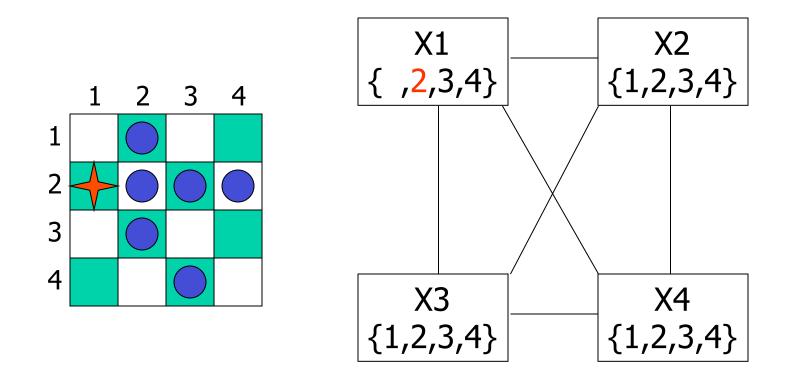




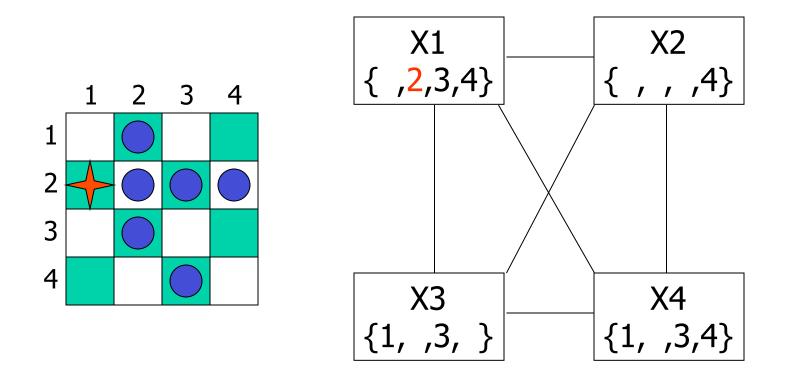
X2=3 eliminates { X3=2, X3=3, X3=4 } ⇒ inconsistent!



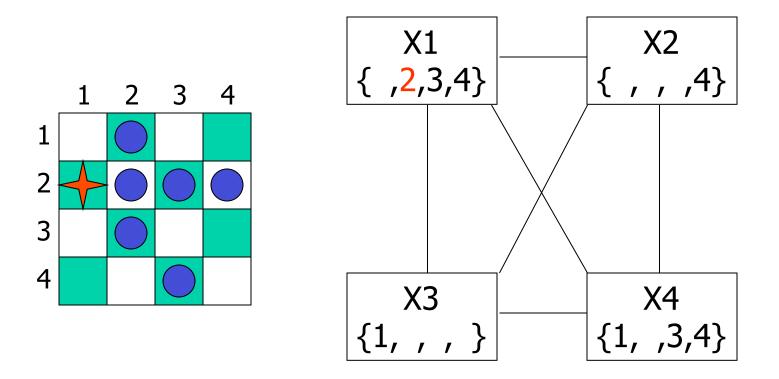
X2=4 \Rightarrow X3=2, which eliminates { X4=2, X4=3} \Rightarrow inconsistent!

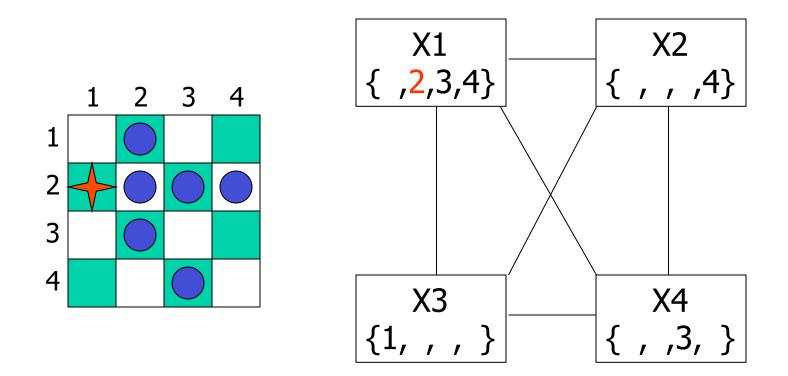


X1 can't be 1, let's try 2

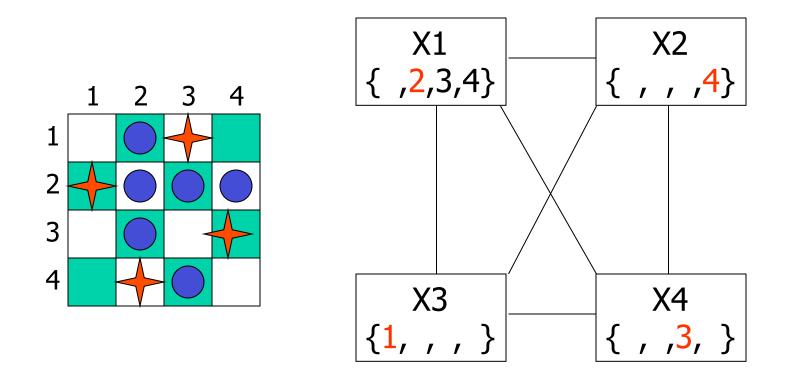


Can we eliminate any other values?





Arc constancy eliminates x3=3 because it's not consistent with X2's remaining values



There is only one solution with X1=2

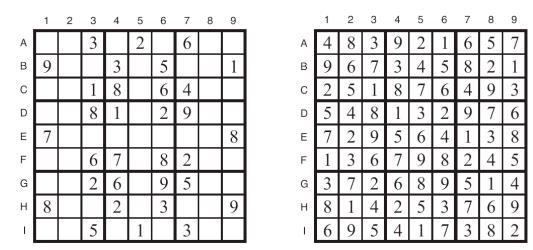
Sudoku Example

_	1	2	3	4	5	6	7	8	9		1	2	3	4	5	6	7	8	9
А			3		2		6			А	4	8	3	9	2	1	6	5	7
В	9			3		5			1	В	9	6	7	3	4	5	8	2	1
С			1	8		6	4			С	2	5	1	8	7	6	4	9	3
D			8	1		2	9			D	5	4	8	1	3	2	9	7	6
Е	7								8	E	7	2	9	5	6	4	1	3	8
F			6	7		8	2			F	1	3	6	7	9	8	2	4	5
G			2	6		9	5			G	3	7	2	6	8	9	5	1	4
н	8			2		3			9	н	8	1	4	2	5	3	7	6	9
Т			5		1		3			I	6	9	5	4	1	7	3	8	2

How can we set this up as a CSP?

<u>Sudoku</u>

- Digit placement puzzle on 9x9 grid with unique answer
- Given an initial partially filled grid, fill remaining squares with a digit between 1 and 9
- Each column, row, and nine 3×3 sub-grids must contain all nine digits



• Some initial configurations are easy to solve and some very difficult

def sudoku(initValue):

- p = Problem()
- # Define a variable for each cell: 11,12,13...21,22,23...98,99 for i in range(1, 10) :
- p.addVariables(range(i*10+1, i*10+10), range(1, 10))
- # Each row has different values
- for i in range(1, 10):
- p.addConstraint(AllDifferentConstraint(), range(i*10+1, i*10+10)) # Each colum has different values
- for i in range(1, 10):
- p.addConstraint(AllDifferentConstraint(), range(10+i, 100+i, 10))
- # Each 3x3 box has different values
- p.addConstraint(AllDifferentConstraint(), [11,12,13,21,22,23,31,32,33]) p.addConstraint(AllDifferentConstraint(), [41,42,43,51,52,53,61,62,63]) p.addConstraint(AllDifferentConstraint(), [71,72,73,81,82,83,91,92,93])
- p.addConstraint(AllDifferentConstraint(), [14,15,16,24,25,26,34,35,36]) p.addConstraint(AllDifferentConstraint(), [44,45,46,54,55,56,64,65,66]) p.addConstraint(AllDifferentConstraint(), [74,75,76,84,85,86,94,95,96])
- p.addConstraint(AllDifferentConstraint(), [17,18,19,27,28,29,37,38,39]) p.addConstraint(AllDifferentConstraint(), [47,48,49,57,58,59,67,68,69]) p.addConstraint(AllDifferentConstraint(), [77,78,79,87,88,89,97,98,99])
- # add unary constraints for cells with initial non-zero values for i in range(1, 10) :
 - for j in range(1, 10):

```
value = initValue[i-1][j-1]
```

if value:

p.addConstraint(lambda var, val=value: var == val, (i*10+j,))
return p.getSolution()

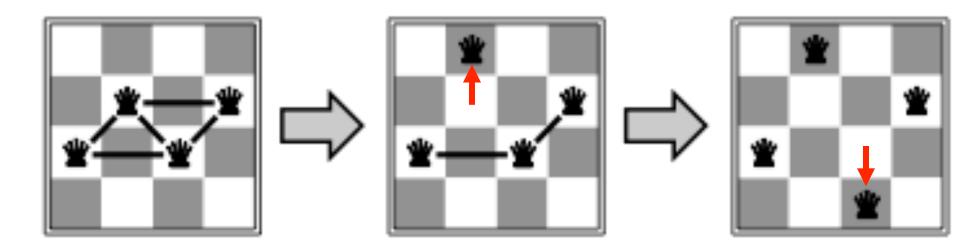
Sample problems easy = [[0,9,0,7,0,0,8,6,0],[0,3,1,0,0,5,0,2,0],[8,0,6,0,0,0,0,0,0][0,0,7,0,5,0,0,0,6],[0,0,0,3,0,7,0,0,0],[5,0,0,0,1,0,7,0,0],[0,0,0,0,0,0,1,0,9],[0,2,0,6,0,0,0,5,0],[0,5,4,0,0,8,0,7,0]]hard = [[0,0,3,0,0,0,4,0,0],[0,0,0,0,7,0,0,0,0],[5,0,0,4,0,6,0,0,2],[0,0,4,0,0,0,8,0,0],[0,9,0,0,3,0,0,2,0],[0,0,7,0,0,0,5,0,0],[6,0,0,5,0,2,0,0,1],[0,0,0,0,9,0,0,0,0],[0,0,9,0,0,0,3,0,0]]very hard = [[0,0,0,0,0,0,0,0,0],[0,0,9,0,6,0,3,0,0],[0,7,0,3,0,4,0,9,0],[0,0,7,2,0,8,6,0,0],[0,4,0,0,0,0,0,7,0],[0,0,2,1,0,6,5,0,0],[0,1,0,9,0,5,0,4,0],[0,0,8,0,2,0,7,0,0],[0,0,0,0,0,0,0,0,0]]

Local search for constraint problems

- Remember local search?
- There's a version of local search for CSP problems
- Basic idea:
 - -generate a random "solution"
 - -Use metric of "number of conflicts"
 - -Modifying solution by reassigning one variable at a time to decrease metric until solution found or no modification improves it
- Has all features and problems of local search

Min Conflict Example

- •States: 4 Queens, 1 per column
- •Operators: Move queen in its column
- •Goal test: No attacks
- •Evaluation metric: Total number of attacks

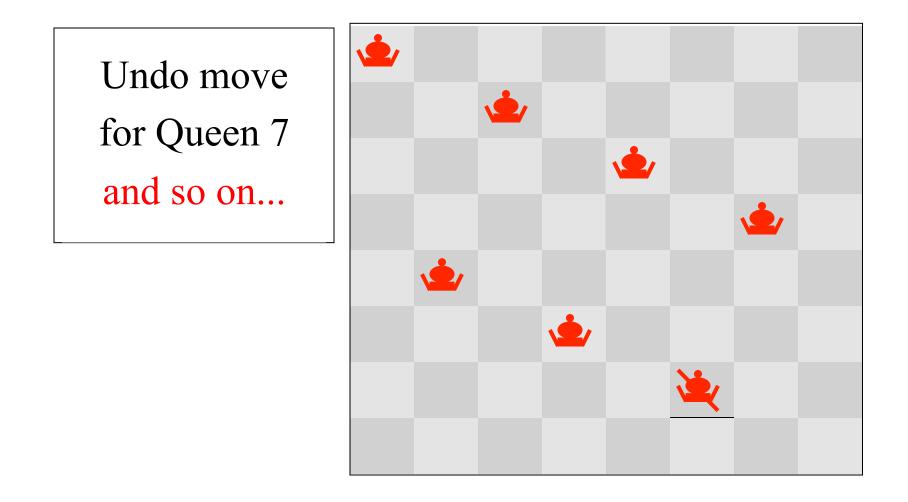


How many conflicts does each state have?

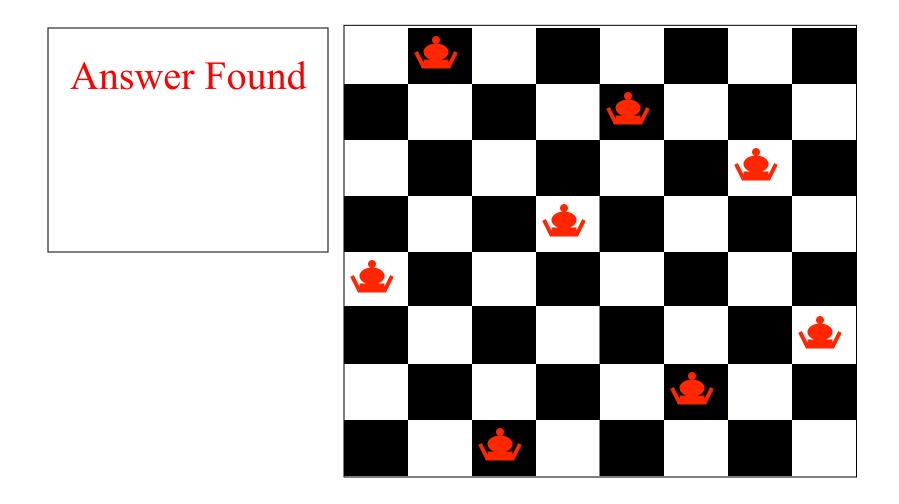
Basic Local Search Algorithm

Assign a domain value d_i to each variable v_i while no solution & not stuck & not timed out: bestCost $\leftarrow \infty$; bestList $\leftarrow \emptyset$; for each variable $v_i | \text{Cost}(\text{Value}(v_i) > 0)$ for each domain value d_i of v_i if $Cost(d_i) < bestCost$ bestCost \leftarrow Cost(d_i); bestList $\leftarrow d_i$; else if $Cost(d_i) = bestCost$ bestList \leftarrow bestList $\cup d_i$ Take a randomly selected move from bestList

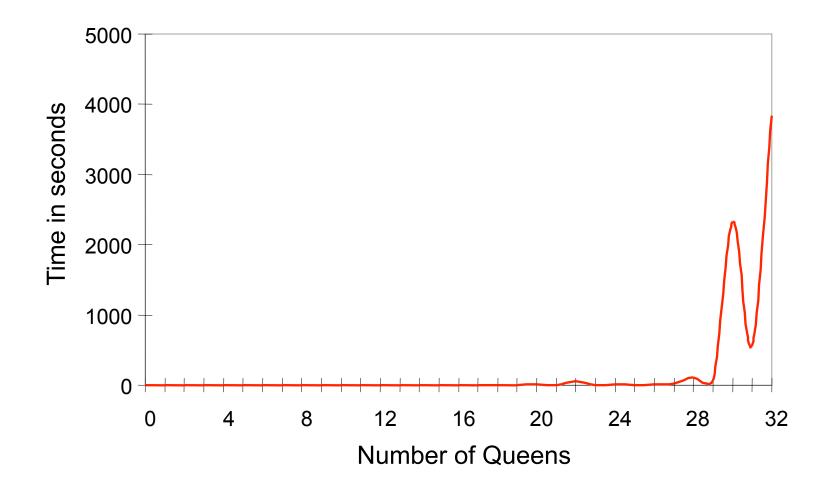
Eight Queens using Backtracking



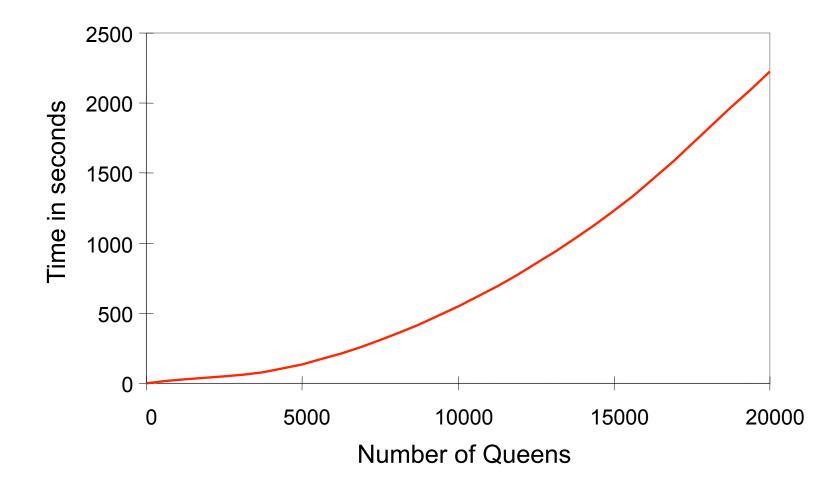
Eight Queens using Local Search



Backtracking Performance



Local Search Performance



Min Conflict Performance

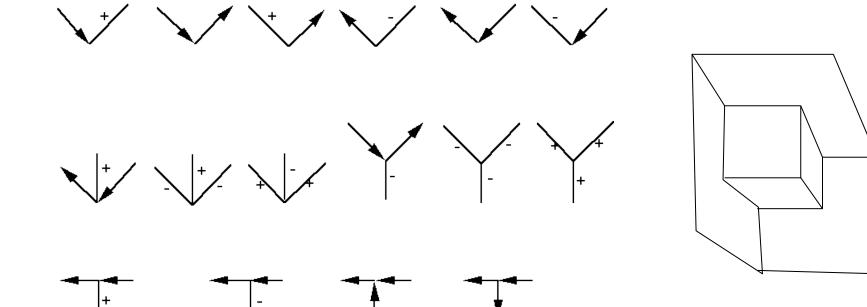
- Performance depends on quality and informativeness of initial assignment; inversely related to distance to solution
- Min Conflict often has astounding performance
- For example, it's been shown to solve arbitrary size (in the millions) N-Queens problems in constant time.
- This appears to hold for arbitrary CSPs with the caveat...

Min Conflict Performance

Except in a certain critical range of the ratio constraints to variables.

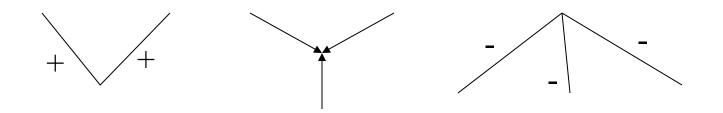
Famous example: labeling line drawings

- <u>Waltz</u> labeling algorithm, earliest AI CSP application (1972)
 - Convex interior lines are labeled as +
 - Concave interior lines are labeled as -
 - Boundary lines are labeled as
- There are 208 labeling (most of which are impossible)
- Here are the 18 legal labeling:



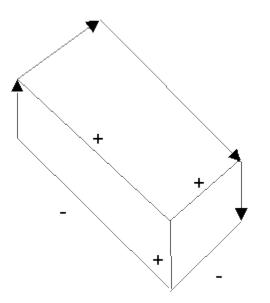
Labeling line drawings II

• Here are some illegal labelings:

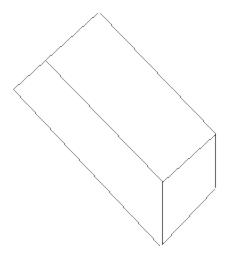


Labeling line drawings

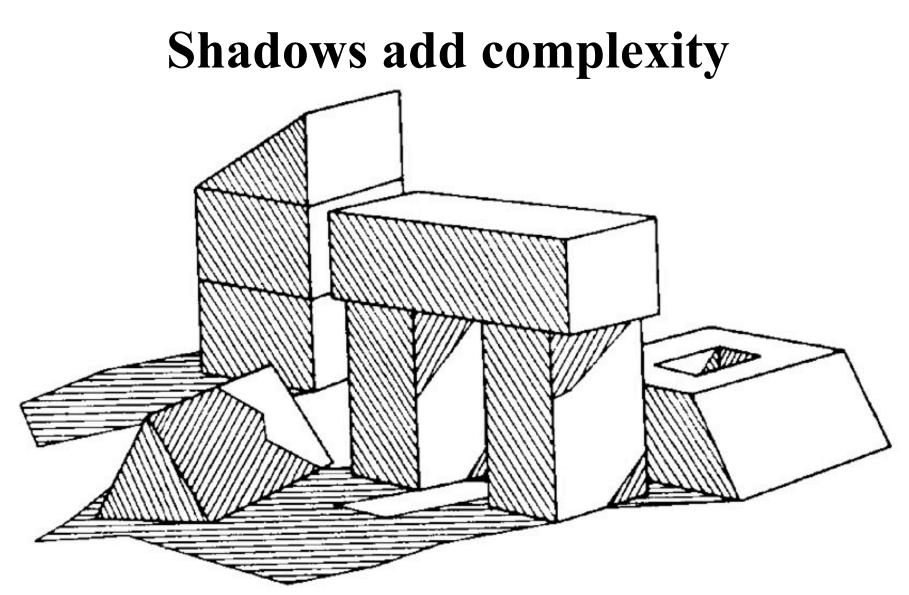
Waltz labeling algorithm: propagate constraints repeatedly until a solution is found



A solution for one labeling problem



A labeling problem with no solution



CSP was able to label scenes where some of the lines were caused by shadows

K-consistency

- K-consistency generalizes arc consistency to sets of more than two variables.
 - -A graph is K-consistent if, for legal values of any K-1 variables in the graph, and for any Kth variable V_k , there is a legal value for V_k
- Strong K-consistency = J-consistency for all J<=K
- Node consistency = strong 1-consistency
- Arc consistency = strong 2-consistency
- Path consistency = strong 3-consistency

Why do we care?

- If we have a CSP with N variables that is known to be strongly N-consistent, we can solve it without backtracking
- 2. For any CSP that is strongly K-consistent, if we find an appropriate variable ordering (one with "small enough" branching factor), we can solve the CSP without backtracking

Intelligent backtracking

- **Backjumping**: if V_j fails, jump back to the variable V_i with greatest i such that the constraint (V_i, V_j) fails (i.e., most recently instantiated variable in conflict with V_i)
- **Backchecking**: keep track of incompatible value assignments computed during backjumping
- **Backmarking**: keep track of which variables led to the incompatible variable assignments for improved backchecking

Challenges for constraint reasoning

- What if not all constraints can be satisfied?
 - -Hard vs. soft constraints
 - -Degree of constraint satisfaction
 - -Cost of violating constraints
- What if constraints are of different forms?
 - -Symbolic constraints
 - -Numerical constraints [constraint solving]
 - -Temporal constraints
 - -Mixed constraints

Challenges for constraint reasoning

- What if constraints are represented intensionally?
 - Cost of evaluating constraints (time, memory, resources)
- What if constraints, variables, and/or values change over time?
 - -Dynamic constraint networks
 - -Temporal constraint networks
 - -Constraint repair
- What if multiple agents or systems are involved in constraint satisfaction?
 - -Distributed CSPs
 - -Localization techniques