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Today’s Class

 Project clarifications
 Extra credit assignment

* Guest lecture

* k-nearest neighbor

e k-means clustering

* Naive Bayes

» Learning Bayes networks

Thursday, November 15, 12



Instance-Based Learning

K-nearest neighbor
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IBL

 Decision trees are a kind of model-based learning

— We take the training instances and use them to build a mode! of the
mapping from inputs to outputs

— This model (e.g., a decision tree) can be used to make predictions on
new (test) instances

« Another option 1s to do instance-based learning

— Save all (or some subset) of the instances

— Given a test instance, use some of the stored instances in some way
to make a prediction

* Instance-based methods:
— Nearest neighbor and its variants (today)
— Support vector machines (if you take 671)
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Nearest Neighbor

 Vanilla “Nearest Neighbor™:
— Save all training instances X, = (C, F,)) in T

— (1ven a new test instance Y, find the
instance X] that is closest to Y

— Predict class C,

* What does “closest” mean?

— Usually: Euclidean distance in feature
space

— Alternatively: Manhattan distance, or any
other distance metric
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knn[K=1):12 Distance

Borrowed from Ben Taskar of UPenn
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K-Nearest Neighbor

* What 1f the data 1s noisy?
— Generalize to k-nearest neighbor
— Find the & closest training instances to Y
— Use majority voting to predict the class label of Y

— Better yet: use weighted (by distance) voting to predict the class
label

* Kernel Regression
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Nearest Neighbor Example:
Run Outside (+) or Inside (-)
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Unsupervised Learning:
Clustering

28
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Unsupervised Learning

» Learn without a “supervisor” who labels instances
— Clustering
— Scientific discovery
— Pattern discovery
— Associative learning

* Clustering:

— Given a set of instances without labels, partition them such that each
Instance 1s:

 similar to other instances in its partition (intra-cluster similarity)
* dissimilar from instances in other partitions (inter-cluster dissimilarity)
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Clustering Techniques

* Hierarchical clustering

— Agglomerative clustering
* Single-link clustering
* Complete-link clustering
» Average-link clustering

 Partitional clustering

— k-means clustering

* Spectral clustering

— Dimension reduction

30
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Agglomerative Clustering

Agglomerative:
— Start with each instance in a cluster by itself

— Repeatedly combine pairs of clusters until some stopping criterion is
reached (or until one “super-cluster” with substructure 1s found)

— Often used for non-fully-connected data sets (e.g., clustering in a social
network)

Single-link:

— At each step, combine the two clusters with the smallest minimum distance
between any pair of instances in the two clusters (i.e., find the shortest
“edge” between each pair of clusters

Average-link:

— Combine the two clusters with the smallest average distance between all
pairs of instances

Complete-link:

— Combine the two clusters with the smallest maximum distance between any
pair of instances
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k-Means

e Partitional:
— Start with all instances in a set, and find the “best” partition

e k-Means:

— Basic 1dea: use expectation maximization to find the best clusters

— Objective function: Minimize the within-cluster sum of squared
distances

— Initialize & clusters by choosing £ random instances as cluster
“centroids” (where £ 1s an input parameter)

— E-step: Assign each instance to its nearest cluster (using Euclidean
distance to the centroid)

— M-step: Recompute the centroid as the center of mass of the
instances 1n the cluster

— Repeat until convergence is achieved
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Naive Bayes
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Naive Bayes

» Use Bayesian modeling

« Make the simplest possible independence assumption:

— Each attribute is independent of the values of the other attributes,
given the class variable

— In our restaurant domain: Cuisine is independent of Patrons, given a
decision to stay (or not)
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Bayesian Formulation

« p(C|F,,..,F)=p(C)pF,,...F |C)/PEF,,..,F)
=ap(C) p(Fy, ..., F, [ C)
 Assume that each feature F. is conditionally independent of
the other features given the class C. Then:
p(C|Fy, ... F) =ap(C) IT; p(F; | C)

« We can estimate each of these conditional probabilities
from the observed counts in the training data:
p(F,| C) =N(F; A C)/N(C)
— One subtlety of using the algorithm in practice: When your
estimated probabilities are zero, ugly things happen
— The fix: Add one to every count (aka “Laplacian smoothing”)
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Naive Bayes: Example

* p(Wait | Cuisine, Patrons, Rainy?) =
o p(Wait) p(Cuisine | Wait) p(Patrons | Wait)
p(Rainy? | Wait)

11
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Naive Bayes: Analysis

* Naive Bayes 1s amazingly easy to implement (once you
understand the bit of math behind it)

* Remarkably, naive Bayes can outperform many much more

complex algorithms—it’s a baseline that should pretty much
always be used for comparison

« Naive Bayes can’t capture interdependencies between
variables (obviously)—for that, we need Bayes nets!
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Learning Bayesian Networks
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Bayesian Learning: Bayes’ Rule

« Given some model space (set of hypotheses h.) and

evidence (data D):
— P(hy|D) = a P(Dlhy) P(h;)

* We assume that observations are independent of each other,
given a model (hypothesis), so:

- P(hD) =« Hj P(dj[h;) P(h;)

 To predict the value of some unknown quantity, X
(e.g., the class label for a future observation):
— P(X|D) = X; P(X|D, h) P(hD) = X, P(X|h;) P(h|D)

~

These are equal by our

independence assumption
14

Thursday, November 15, 12



Bayesian Learning

* We can apply Bayesian learning in three basic ways:

— MAP (Maximum A Posteriori) hypothesis: Choose the hypothesis
with the highest a posteriori probability, given the data

— MLE (Maximum Likelihood Estimate): Assume that all
hypotheses are equally likely a priori; then the best hypothesis 1s
just the one that maximizes the likelihood (i.e., the probability of the
data given the hypothesis)

— BMA (Bayesian Model Averaging): Don’t just choose one
hypothesis; instead, make predictions based on the weighted average
of all hypotheses (or some set of best hypotheses)

« MDL (Minimum Description Length) principle: Use
some encoding to model the complexity of the hypothesis,
and the fit of the data to the hypothesis, then minimize the
overall description of h. + D
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Learning Bayesian Networks

* @Given training set J) = {x[l],..., x[M]}
 Find B that best matches D

— model selection
— parameter estimation

— — CE>
E[1]  B[l] A[l] C[1]]
— CD
. IRCCEY;

X

E[M] B[M] AM] C[M]
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Parameter Estimation

 Assume known structure

e Goal: estimate BN parameters 0
— entries in local probability models, P(X | Parents(X))

« A parameterization 0 1s good if it 1s likely to generate the
observed data:

L(O:D)=P(D|0) = HP(x[m] )

1.1.d. samplesﬂ

e Maximum Likelithood Estimation (MLE) Principle:
Choose 0% so as to maximize L

17
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Parameter Estimation 11

* The likelithood decomposes according to the structure of
the network
— we get a separate estimation task for each parameter

 The MLE (maximum likelithood estimate) solution:
— for each value x of a node X
— and each instantiation u of Parents(X)

. N(x,u) ~— o

Xu = sufficient statistics

N(u) — -

— Just need to collect the counts for every combination of parents
and children observed in the data

— MLE is equivalent to an assumption of a uniform prior over
parameter values

18
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Sufficient Statistics: Example

* Why are the counts sufficient?

Light-level
/ 9 N(x,u)
Earthquake Burglary T N(u)

/

s 11 u = NCA, E, B)/ NE, B)
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Model Selection

Goal: Select the best network structure, given the data
Input:

— Training data

— Scoring function
Output:

— A network that maximizes the score

20
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Structure Selection: Scoring

« Bayesian: prior over parameters and structure
— get balance between model complexity and fit to data as a byproduct

Marginal likelihood .
Prior
e Score (G:D) =log P(G|D) a log [P}‘D|G) P(G/)]
e Marginal likelihood just comes from our parameter estimates

 Prior on structure can be any measure we want; typically a
function of the network complexity

Same key property: Decomposability

Score(structure) = 2. Score(family of X))

21
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Heuristic Search
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Exploiting Decom

To recompute scores, Cd
only need to re-score families
that changed in the last move <2

posability

23
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Variations on a Theme

 Known structure, fully observable: only need to do
parameter estimation

e Unknown structure, fully observable: do heuristic search
through structure space, then parameter estimation

 Known structure, missing values: use expectation
maximization (EM) to estimate parameters

 Known structure, hidden variables: apply adaptive
probabilistic network (APN) techniques

 Unknown structure, hidden variables: too hard to solve!

24

Thursday, November 15, 12



Handling Missing Data

* Suppose that in some cases, we observe Moon-ohase
earthquake, alarm, light-level, and P

moon-phase, but not burglary /

e Should we throw that data away??
« Idea: Guess the missing values Light-level

based on the other data

Earthquake Burglary

/

25
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EM (Expectation Maximization)

* Guess probabilities for nodes with missing values (e.g.,
based on other observations)

 Compute the probability distribution over the missing
values, given our guess

« Update the probabilities based on the guessed values
« Repeat until convergence

26
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EM Example

* Suppose we have observed Earthquake and Alarm but not
Burglary for an observation on November 27

 We estimate the CPTs based on the rest of the data

* We then estimate P(Burglary) for November 27 from those
CPTs

* Now we recompute the CPTs as if that estimated value had
been observed

([ ] . '
Repeat until convergence! Earthquake Burglary

/
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