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Instance-Based & 
Bayesian Learning

Chapter 18.8, 20 (parts)
Some material adapted 
from lecture notes by 
Lise Getoor and Ron Parr
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Today’s Class

• Project clarifications
• Extra credit assignment
• Guest lecture
• k-nearest neighbor
• k-means clustering
• Naïve Bayes
• Learning Bayes networks
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Instance-Based Learning

K-nearest neighbor
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IBL

• Decision trees are a kind of model-based learning
– We take the training instances and use them to build a model of the 

mapping from inputs to outputs
– This model (e.g., a decision tree) can be used to make predictions on 

new (test) instances
• Another option is to do instance-based learning

– Save all (or some subset) of the instances
– Given a test instance, use some of the stored instances in some way 

to make a prediction
• Instance-based methods:

– Nearest neighbor and its variants (today)
– Support vector machines (if you take 671)

5

Thursday, November 15, 12



Nearest Neighbor
• Vanilla “Nearest Neighbor”:

– Save all training instances Xi = (Ci, Fi) in T
– Given a new test instance Y, find the 

instance Xj that is closest to Y
– Predict class Ci

• What does “closest” mean?
– Usually: Euclidean distance in feature 

space
– Alternatively: Manhattan distance, or any 

other distance metric
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Borrowed from Ben Taskar of UPenn
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K-Nearest Neighbor

• What if the data is noisy?
– Generalize to k-nearest neighbor
– Find the k closest training instances to Y
– Use majority voting to predict the class label of Y
– Better yet: use weighted (by distance) voting to predict the class 

label
• Kernel Regression
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Nearest Neighbor Example:
Run Outside (+) or Inside (-)
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Unsupervised Learning:
Clustering
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Unsupervised Learning

• Learn without a “supervisor” who labels instances
– Clustering
– Scientific discovery
– Pattern discovery
– Associative learning

• Clustering:
– Given a set of instances without labels, partition them such that each 

instance is:
• similar to other instances in its partition (intra-cluster similarity)
• dissimilar from instances in other partitions (inter-cluster dissimilarity)

29

Thursday, November 15, 12



Clustering Techniques

• Hierarchical clustering
– Agglomerative clustering

• Single-link clustering
• Complete-link clustering
• Average-link clustering

– Divisive clustering
• Partitional clustering

– k-means clustering
• Spectral clustering

– Dimension reduction
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Agglomerative Clustering
• Agglomerative:

– Start with each instance in a cluster by itself
– Repeatedly combine pairs of clusters until some stopping criterion is 

reached (or until one “super-cluster” with substructure is found)
– Often used for non-fully-connected data sets (e.g., clustering in a social 

network)
• Single-link:

– At each step, combine the two clusters with the smallest minimum distance 
between any pair of instances in the two clusters (i.e., find the shortest 
“edge” between each pair of clusters

• Average-link:
– Combine the two clusters with the smallest average distance between all 

pairs of instances
• Complete-link:

– Combine the two clusters with the smallest maximum distance between any 
pair of instances
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k-Means

• Partitional:
– Start with all instances in a set, and find the “best” partition

• k-Means:
– Basic idea: use expectation maximization to find the best clusters
– Objective function:  Minimize the within-cluster sum of squared 

distances
– Initialize k clusters by choosing k random instances as cluster 

“centroids” (where k is an input parameter)
– E-step: Assign each instance to its nearest cluster (using Euclidean 

distance to the centroid)
– M-step:  Recompute the centroid as the center of mass of the 

instances in the cluster
– Repeat until convergence is achieved
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Naïve Bayes
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Naïve Bayes

• Use Bayesian modeling
• Make the simplest possible independence assumption:

– Each attribute is independent of the values of the other attributes, 
given the class variable

– In our restaurant domain:  Cuisine is independent of Patrons, given a 
decision to stay (or not)
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Bayesian Formulation
• p(C | F1, ..., Fn) = p(C) p(F1, ..., Fn | C) / P(F1, ..., Fn)

   = α p(C) p(F1, ..., Fn | C) 
• Assume that each feature Fi is conditionally independent of 

the other features given the class C.  Then:
p(C | F1, ..., Fn)  = α p(C) Πi p(Fi | C) 

• We can estimate each of these conditional probabilities 
from the observed counts in the training data:
p(Fi | C)  = N(Fi ∧ C) / N(C)
– One subtlety of using the algorithm in practice:  When your 

estimated probabilities are zero, ugly things happen
– The fix: Add one to every count (aka “Laplacian smoothing”)
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Naive Bayes: Example

• p(Wait | Cuisine, Patrons, Rainy?)  = 
  α p(Wait) p(Cuisine | Wait) p(Patrons | Wait) 
   p(Rainy? | Wait)
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Naive Bayes: Analysis

• Naive Bayes is amazingly easy to implement (once you 
understand the bit of math behind it)

• Remarkably, naive Bayes can outperform many much more 
complex algorithms—it’s a baseline that should pretty much 
always be used for comparison

• Naive Bayes can’t capture interdependencies between 
variables (obviously)—for that, we need Bayes nets!
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Learning Bayesian Networks
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Bayesian Learning: Bayes’ Rule

• Given some model space (set of hypotheses hi) and 
evidence (data D):
– P(hi|D) = α P(D|hi) P(hi)

• We assume that observations are independent of each other, 
given a model (hypothesis), so:
– P(hi|D) = α ∏j P(dj|hi) P(hi)

• To predict the value of some unknown quantity, X
 (e.g., the class label for a future observation):
– P(X|D) =  ∑i P(X|D, hi) P(hi|D) = ∑i P(X|hi) P(hi|D)

These are equal by our
independence assumption
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Bayesian Learning
• We can apply Bayesian learning in three basic ways:

– MAP (Maximum A Posteriori) hypothesis:  Choose the hypothesis 
with the highest a posteriori probability, given the data

– MLE (Maximum Likelihood Estimate): Assume that all 
hypotheses are equally likely a priori; then the best hypothesis is 
just the one that maximizes the likelihood (i.e., the probability of the 
data given the hypothesis)

– BMA (Bayesian Model Averaging): Don’t just choose one 
hypothesis; instead, make predictions based on the weighted average 
of all hypotheses (or some set of best hypotheses)

• MDL (Minimum Description Length) principle:  Use 
some encoding to model the complexity of the hypothesis, 
and the fit of the data to the hypothesis, then minimize the 
overall description of hi + D
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Learning Bayesian Networks 

• Given training set
• Find B that best matches D

– model selection 
– parameter estimation

Data D

Inducer

C

A

EB
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Parameter Estimation
• Assume known structure
• Goal: estimate BN parameters θ

– entries in local probability models, P(X | Parents(X))
• A parameterization θ  is good if it is likely to generate the 

observed data:

• Maximum Likelihood Estimation (MLE) Principle: 
Choose θ∗  so as to maximize L

i.i.d. samples
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Parameter Estimation II
• The likelihood decomposes according to the structure of 

the network
→ we get a separate estimation task for each parameter

• The MLE (maximum likelihood estimate) solution:
– for each value x of a node X
– and each instantiation u of Parents(X)

– Just need to collect the counts for every combination of parents 
and children observed in the data

– MLE is equivalent to an assumption of a uniform prior over 
parameter values

sufficient statistics
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Sufficient Statistics: Example

• Why are the counts sufficient?

Earthquake Burglary

Alarm

Moon-phase

Light-level

θ*
A | E, B = N(A, E, B) / N(E, B)
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Model Selection

Goal: Select the best network structure, given the data
Input:

– Training data
– Scoring function

Output:
– A network that maximizes the score
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Structure Selection: Scoring
• Bayesian: prior over parameters and structure

– get balance between model complexity and fit to data as a byproduct

• Score (G:D) = log P(G|D) α log [P(D|G) P(G)]
• Marginal likelihood just comes from our parameter estimates
• Prior on structure can be any measure we want; typically a 

function of the network complexity

Same key property: Decomposability

Score(structure) = Σi Score(family of Xi)

Marginal likelihood Prior
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Heuristic Search
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Exploiting Decomposability
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To recompute scores, 
only need to re-score families
that changed in the last move
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Variations on a Theme

• Known structure, fully observable: only need to do 
parameter estimation

• Unknown structure, fully observable: do heuristic search 
through structure space, then parameter estimation

• Known structure, missing values: use expectation 
maximization (EM) to estimate parameters

• Known structure, hidden variables: apply adaptive 
probabilistic network (APN) techniques

• Unknown structure, hidden variables: too hard to solve!
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Handling Missing Data

• Suppose that in some cases, we observe 
earthquake, alarm, light-level, and 
moon-phase, but not burglary

• Should we throw that data away??
• Idea: Guess the missing values

based on the other data

Earthquake Burglary

Alarm

Moon-phase

Light-level
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EM (Expectation Maximization)

• Guess probabilities for nodes with missing values (e.g., 
based on other observations)

• Compute the probability distribution over the missing 
values, given our guess

• Update the probabilities based on the guessed values
• Repeat until convergence
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EM Example

• Suppose we have observed Earthquake and Alarm but not 
Burglary for an observation on November 27

• We estimate the CPTs based on the rest of the data
• We then estimate P(Burglary) for November 27 from those 

CPTs
• Now we recompute the CPTs as if that estimated value had 

been observed
• Repeat until convergence! Earthquake Burglary

Alarm
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