CMSC 341 Data Structures
List Review Questions

Please refer to the List, ListNode and ListItr class definitions found on the
last two page. These definitions are the same as those found in the text and
in the class notes. You may assume that all member functions of these classes
have been written and work properly when answering the questions below.

1. Write a new member function of the List class named last(). Similar to
first() and zeroth(), this function returns an iterator to the last data
element of the list. If the list is empty, the iterator returned is “past end”.
What is the asymptotic performance of last()?

2. Overload the equality operator (operator==) for the ListItr class that
returns true if both iterators refer to the same element of the list

3. Write a new member function of the List class named ReversePrint that
uses ListItrs to display the elements of the List in reverse order. The one
and only parameter to ReversePrint is the output stream to which the
elements are displayed. The data elements should be enclosed in angle
brackets (“< > “) and separated by commas. Do not construct a copy of
the list that is in reverse order, just use iterators. You may assume that
operator== (as described above) has been implemented for ListItrs. The
prototype for ReversePrint() is shown below

template< class Object >
void List<Object>::ReversePrint(ostream& out);

4. Write a new function named Splice() whose prototype is shown below.
Note that Splice() is not a member function of the List class.
This function “splices” L2 into L1 at the specified position (pos is an it-
erator over L1). If pos is past end, Splice() does nothing. For example
suppose L1 = {1, 2, 3,4, 5 } and L2 = {10, 20, 30 } and pos is constructed
as list1.first() and then advanced twice so it is positioned at the “3”. Then
the function call L1.Splice(L2, pos); causes L1 to become { 1, 2, 3, 10,
20, 30, 4, 5 } and L2 is unchanged.

What is the asymptotic performance of Splice()? Bear in mind that
there are two lists which may be of different lengths.

template< class Object >

void Splice(List<0Object>& L1,
const List<Object>& L2,
ListItr<Object>& pos);

5. Complete the following table of Big-Oh, worst-case asymptotic time per-
formance for the given operations and implementations of the List ADT.
Give your answers in terms of, n, the number of elements in the list.

| Operation | Singly Linked List | Array/Vector |

insert
find
remove
makeEmpty
isEmpty
first

6. Suppose you are provide with a set of N random numbers which are to
be inserted into a sorted List (smallest to largest). What would be the
worst-case asymptotic time performance for building the entire list?

7. Your boss has insisted that you add a new member function for the Lis-
tItr class named retreat() which moves the iterator one node “backward”
(toward the header node). What is the asymptotic time performance for
retreat() if the underlying List is singly linked? doubly linked?

8. Describe the advantages (if any) and disadvantages (if any) of each of the
List ADT implementation — singly linked list, circular linked list, doubly
linked list, doubly circular linked list, array/vector, cursor space.

9. Do the following exercises in chapter 3 of the text — 3.1, 3.2 (write code),
3.9, 3.10.

Definition of the ListNode Class
This definition is taken from the text.

template< class Object >
class ListNode
{
ListNode(const Object& theElement = Object()),
ListNode *n = NULL)
: element(theElement), next(n) { }
Object element;
ListNode *next;
friend class List< Object >;
friend class ListItr< Object >;
};

Definition of the List Class
This definition is taken directly from the text.

template< class Object >
class List
{
public:
List();
List(const List& rhs);
“List();
bool isEmpty() const;
void makeEmpty();
ListItr< Object > zeroth() const;
ListItr< Object > first() const;
void insert(const Object& x, const ListItr< Object >& p);
ListItr< Object > find(const Object& x) const;
ListItr< Object > findPrevious(const Object& x) const;
void remove(const Object& x);
const List& operator=(const List& rhs);
private:
ListNode< Object > *header;

Definition of the ListItr Class
This definition is taken directly from the text.

template< class Object >
class ListItr
{
public:
ListItr() : current (NULL) { }
bool isPastEnd() const
{ return current == NULL }
void advance()
{ if('isPastEnd()) current = current->next; }
const Object& retrieve() const
{ return current->element; }
private:
ListNode< Object > *current;
ListItr(ListNode< Object > *theNode
: current(theNode) { }
friend class List< Object >; // grant access to private constructor

};

