Binomial Queues

Section 6.8
Heap Operations: Merge

Given two binary heaps H_1 and H_2, produce a new heap H' combining H_1 and H_2

- Binary heaps take $\Theta(n_1 + n_2)$ time to merge
- i.e. they can never merge in better than linear time

We can do better, however

- Merge in $O(\log N)$ time
- this comes at the expensive of a slight performance hit on our other operations
Binomial Trees

- **Binomial trees** are recursive defined
- Start with one node
 - This is a binomial tree of **height 0**
 - To form a tree of height k, attach two trees of height $k - 1$ together
 - Attach one as a child of the root of the other
B_4
Binomial Tree Size

- A binomial tree of height k has 2^k nodes

- Conversely, a binomial tree with n nodes has $\log_2(n)$ height

- The number of nodes at level d of a tree with height k is the binomial coefficient:

$$\binom{k}{d} = \frac{k!}{d!(k-d)!}$$
Binomial Queues

- **Binomial Heaps / Binomial Queues**
 - use a *forest* of binomial trees
 - use each binomial tree \(0,1\) times
 - impose heap ordering on each binomial tree
 - no relationship between the roots of each tree
Binomial Queues

H_1:
Binomial Queue Size

- A binomial queue H with N nodes has $O(\log N)$ binomial trees.
 - Let k be the largest integer such that $2^k \leq N$.
 - Observe that $k \leq \log_2(N)$.
 - N can be written as the sum of unique powers of 2, the largest of which is 2^k.
 - This sum uses each power of 2 \{0,1\} times.
 - The sum has at most $k + 1$ terms in it.
 - Each term corresponds to a binomial tree of 2^n nodes in the forest of H.
Merge

- “Add” corresponding trees from the two forests
- For k from 0 to maxheight
 - If neither queue has a B_k, skip
 - If only 1, leave it
 - If two, attach the larger priority root as a child of the other, producing a tree of height $k + 1$
 - If three, pick two to merge, leave 1

H_1:

H_2:

$O(\log N)!$
After Merging H_1 and H_2
To insert a node X into a binomial queue H:

- Observe that a single node is a binomial tree of height 0
- So treat X as a binomial queue
- Merge X and H

Merge operation takes $\log(N)$ time

Therefore so does insert
insert(1)
insert(2)
insert(3)
insert(4)
insert(5)
insert(6)
insert(7)
deleteMin

- To **deleteMin** from a binomial queue H
- Find the binomial tree with the smallest root, let this be B_k
- Remove B_k from H, leaving the rest of the trees to form queue H'
 - Delete (and return to user) the root of B_k
 - this leaves us with the children of B_k’s root, which are binomial trees of size $B_0, B_1, ..., B_{k-1}$
 - then let the trees $B_0, B_1, ..., B_{k-1}$ form a new binomial queue H''
- Merge H' and H'' to repair the tree

Also $O(\log N)$!
deleteMin
deleteMin

H'':

12
 /
21 24

14

65

26

16

18

21

24

14

65

26

16

18
deleteMin

H':

H'':
deleteMin
Non-Standard Operations

- percolateUp
 - identical to binary heap
- decreaseKey
 - percolateUp as far as root of binomial tree

- delete (an arbitrary node)
 - decreaseKey to $-\infty$, then deleteMin