
5/5/2014

1

Iterators and STL Containers

CMSC 202

Warmup

Write the class definition for the templated
Bag class

A bag has:

Random insertion

Random removal

STL

Standard Template Library

Why use it?

Good programmers know what to write.
Great ones know what to reuse.

Paraphrase from “The Cathedral and the Bazaar”

A must-read for any computer scientist

STL provides reusable code

Linked list, vector, map, multimap, pair, set, multiset, queue, stack,
…

Don’t reinvent the wheel…

5/5/2014

2

List

Linked List container

No random access (does not support operator[] or at())

Essential operations

insert()

push_back()

push_front()

pop_front()

pop_back()

erase()

Set and Multiset

Set
Sorted collection of unique elements

Cannot change value of an element

No random access

Multiset
Allows duplicate elements

Essential operations
insert()

erase()

count(element)

find(element)

Pair

Pair

Connects two items into a single object

Essential data

first

gets the first member of pair

second

gets the second member of pair

Example
pair<int, string> hello(5, “Hello”);

cout << hello.second << endl; // Hello

5/5/2014

3

Map and Multimap

Map
Stores key/value pairs, sorted by key

Value is modifiable, key is not

Key must be unique

Multimap
Allows duplicate keys

Essential operations
insert()

erase()

count(key)

find(key)

Iterators

Problem

Not all STL classes provide random access

How do we do “for each element in X”?

Solution

Iterators

“Special” pointers

“Iterate” through each item in the collection

Several types

Bidirectional

Const bidirectional

Why is this

necessary?

Why can’t we

just use a

normal

pointer?

Where have

we seen these

before???

What does

const mean?

Iterators

Essential operations

begin()

Returns an iterator to first item in collection

end()

Returns an iterator ONE BEYOND the last item in
collection

How does this simplify things?

If the collection is empty, begin() == end()

5/5/2014

4

Set Example
int main ()

{

set<int> iSet;

iSet.insert(4);

iSet.insert(12);

iSet.insert(7);

// this looping construct works for all containers

set<int>::const_iterator position;

for (position = iSet.begin(); position != iSet.end(); ++position)

{

cout << *position << endl;

}

return 0;

}

Map Example
int main ()

{

// create an empty map using strings

// as keys and floats as values

map<string, float> stocks;

// insert some stock prices

stocks.insert(make_pair("IBM", 42.50));

stocks.insert(make_pair("XYZ", 2.50));

stocks.insert(make_pair("WX", 0.50));

// instantiate an iterator for the map

map<string, float>::iterator position;

// print all the stocks

for (position = stocks.begin(); position != stocks.end(); ++position)

cout << "(" << position->first << ", " << position->second << ")\n";

return 0;

}

Iterators - Overloaded Operators
• * (pointer dereference)

• Dereferences the iterator

• ++

• Moves forward to next element

• --

• Moves backward to previous element

• ==

• True if two iterators point to same element

• !=

• False if two iterators point to different elements

• =

• Assignment, makes two iterators point to same element

5/5/2014

5

Iterators and Collection Methods

erase(iterator)

Parameter is an iterator

Can have as many iterators into a collection
as necessary

Practice

Create a vector of integers

Using an iterator and a loop

Change each integer to be the value of its
square

Using an iterator and a second loop

Print each item in reverse order

Challenge

Using a map, create a collection of student grades
Key

Student ID

Value

Grade they want in this course

Store 10 students and their desired grade

Iterate through the map
Print each key/value pair in the map

What sorting mechanism did the map use?
How would we specify that we wanted it sorted another way?

