
2/18/2014

1

C++ Primer II

CMSC 202

Topics Covered

• Expressions, statements, blocks

• Control flow: if/else-if/else, while, do-while,
for, switch

• Booleans, and non-bools as bools

• Preprocessor directives—intro
(design aspects later)

• Functions (simple intro)

2

Topics Covered

More topics:

• Arrays

• Structures

• Basic pointers

• Comand-line arguments

3

2/18/2014

2

• An expression is a construct made up of
variables, operators, and method invocations,
that evaluates to a single value.

• For example:

Expressions

4

int cadence = 0;

anArray[0] = 100;

cout << "Element 1 at index 0: " << anArray[0]);

int result = 1 + 2;

cout << (x == y ? "equal" :"not equal");

Statements
• Statements are roughly equivalent to sentences

in natural languages. A statement forms a
complete unit of execution.

• Two types of statements:
– Expression statements – end with a semicolon ‘;’

• Assignment expressions

• Any use of ++ or --

• Method invocations

• Object creation expressions

– Control Flow statements
• Selection & repetition structures

5

If-Then Statement

• The if-then statement is the most basic of all
the control flow statements.

if (x == 2)

cout << "x is 2";

cout << "Finished";

if x == 2:

print "x is 2"

print "Finished"

Python C++

Notes about C++’s if-then:

• Conditional expression must be in parentheses
• Conditional expression has various interpretations of
“truthiness” depending on type of expression

6

2/18/2014

3

A few digressions, on:

• Multi-statement blocks

• Scope

• Truth in C++

7

Multiple Statements

• What if our then case contains multiple
statements?

if(x == 2)

cout << "even";

cout << "prime";

cout << "Done!";

if x == 2:

print "even"

print "prime"

print "Done!"

Python C++ (but incorrect!!)

Notes:
• Unlike Python, spacing plays no role in C++’s
selection/repetition structures
• The C++ code is syntactically fine – no compiler errors
• However, it is logically incorrect

8

Blocks

• A block is a group of zero or more statements
that are grouped together by delimiters.

• In C++, blocks are denoted by opening and
closing curly braces ‘{’ and ‘}’ .

if(x == 2) {

cout << "even";

cout << "prime";

}

cout << "Done!";

Note:
• It is generally considered a good practice to include the curly
braces even for single line statements.

9

2/18/2014

4

Variable Scope

• You can define new variables in many places in your code,
so where is it in effect?

• A variable’s scope is the set of code statements in which the
variable is known to the compiler.

• Where a variable can be referenced from in your program
• Limited to the code block in which the variable is defined
• For example:

if(age >= 18) {

bool adult = true;

}

/* couldn't use adult here */

10

“Truthiness”**

• What is “true” in C++?

• Like some other languages, C++ has a true Boolean
primitive type (bool), which can hold the constant
values true and false

• Assigning a Boolean value to an int variable will
assign 0 for false, 1 for true

11

** kudos to Stephen Colbert

“Truthiness”

• For compatibility with C, C++ is very liberal
about what it allows in places where Boolean
values are called for:

– bool constants, variables, and espressions have
the obvious interpretation

– Any other integer-valued type is also allowed, and
0 is interpreted as “false”, all other values as
“false”

• So, even -1 is considered true!

12

2/18/2014

5

13

Gotcha! = versus ==

int a = 0;

if (a = 1) {

printf (“a is one\n”) ;

}

… and back to control flow structures

14

If-Then-Else Statement

• The if-then-else statement looks much like it
does in Python (aside from the parentheses
and curly braces).

if(x % 2 == 1) {

cout << "odd";

} else {

cout << "even";

}

if x % 2 == 1:

print "odd"

else:

print "even"

Python C++

15

2/18/2014

6

If-Then-Else If-Then-Else Statement

• Again, very similar…

if (x < y) {

cout << "x < y";

} else if (x > y) {

cout << "x > y";

} else {

cout << "x == y";

}

if x < y:

print "x < y"

elif x > y:

print "x > y"

else:

print "x == y"

Python C++

16

Switch Statement

• Unlike if-then and if-then-else, the switch
statement allows for any number of possible
execution paths.

• Works with any integer-based (e.g., char, int,
long) or enumerated type (covered later)

17

Switch Statement

int cardValue = /* get value from somewhere */;

switch(cardValue) {

case 1:

cout << "Ace";

break;

case 11:

cout << "Jack";

break;

case 12:

cout << "Queen";

break;

case 13:

cout << "King";

break;

default:

cout << cardValue;

}

Notes:
• break statements are typically
used to terminate each case.
• It is usually a good practice to
include a default case.

18

2/18/2014

7

Switch Statement

switch (month) {

case 1: case 3: case 5: case 7:

case 8: case 10: case 12:

cout << "31 days";

break;

case 4: case 6: case 9: case 11:

cout << "30 days";

break;

case 2:

cout << "28 or 29 days";

break;

default:

cout << "Invalid month!";

break;

}

Note:
• Without a break statement, cases “fall through” to the next statement.

19

Switch Statement

• To repeat: the switching value must evaluate
to an integer or enumerated type (some other
esoteric class types also allowed—not covered
in class)

• The case values must be constant or literal, or
enum value

• The case values must be of the same type as
the switch expression

20

While Loops

• The while loop executes a block of statements
while a particular condition is true.

• Pretty much the same as Python…

int count = 0;

while(count < 10) {

cout << count;

count++;

}

cout << "Done!";

count = 0;

while(count < 10):

print count

count += 1

print "Done!"

Python C++

21

2/18/2014

8

Do-While Loops

• In addition to while loops, Java also provides a
do-while loop.

– The conditional expression is at the bottom of the
loop.

– Statements within the block are always executed
at least once.

– Note the trailing semicolon!

int count = 0;

do {

cout << count;

count++;

} while(count < 10);

cout << "Done!";

22

For Loop

• The for statement provides a compact way to iterate
over a range of values.

• The initialization expression initializes the loop – it is
executed once, as the loop begins.

• When the termination expression evaluates to false,
the loop terminates.

• The increment expression is invoked after each
iteration through the loop.

for (initialization; termination; increment) {

/* ... statement(s) ... */

}

23

For Loop

• The equivalent loop written as a for loop

– Counting from start value (zero) up to (excluding)
some number (10)

for (int count = 0; count < 10; count++) {

cout << count;

}

cout << "Done!";

for count in range(0, 10):

print count

print "Done!"

Python

C++

24

2/18/2014

9

For Loop

• Counting from 25 up to (excluding) 50 in steps
of 5

for (int count = 25; count < 50; count += 5){

cout << count;

}

cout << "Done!";

for count in range(25, 50, 5):

print count

print "Done!"

Python

C++

25

Range-based for Loop
• C++ has an equivalent for Python’s for-in loop, or

Java’s “enhanced for” loop
• We will cover this alternate for form later when

we learn about iterators

26

27

The break Statement

• The break statement can be used in while,
do-while, and for loops to cause premature
exit of the loop.

• THIS IS NOT A RECOMMENDED CODING
TECHNIQUE.

2/18/2014

10

28

Example break in a for Loop

#include <iostream>

using namespace std;

int main() {

int i;

for (i = 1; i < 10; i++) {

if (i == 5) {

break;

}

cout << i << “ “;

}

cout << “\nBroke out of loop at i = “

<< i;

return 0 ;

}

OUTPUT:

1 2 3 4

Broke out of loop at i = 5.

29

The continue Statement

• The continue statement can be used in
while, do-while, and for loops.

• It causes the remaining statements in the
body of the loop to be skipped for the
current iteration of the loop.

• THIS IS NOT A RECOMMENDED CODING
TECHNIQUE.

30

Example continue in a for Loop

#include <iostream>

Using namespace std;

int main() {

int i;

for (i = 1; i < 10; i++) {

if (i == 5) {

continue;

}

cout << i << “ “;

}

cout << “\nDone.\n”;

return 0 ;

}

OUTPUT:

1 2 3 4 6 7 8 9

Done.

2/18/2014

11

Preprocessor Directives

31

Preprocessor Directives

• The C/C++ compiler has a preprocessing stage, called
“cpp”

• It looks for preprocessor directives: lines beginning
with a ‘#’ (long before Twitter! )

• These cause it to load other files, to define
substitution macros that apply to the rest of the file
being preprocessed, and other text-based
modifications to your source

• An important point: your source file itself is not
actually modified—the modifications are just done to
a temporary copy at compile time

32

Preprocessor Directives

• Important directive 1: #include

– This directive causes the preprocessor to insert, in
place of this line, the entire contents of the
specified file.

– E.g.:
#include “myClass.h”

Will cause the contents of the file “myClass.h” to be
inserted into your source file at this point.

– Note: no ‘;’ at the end of this directive!

33

2/18/2014

12

Preprocessor Directives

• Important directive 2: #define

– This directive causes the preprocessor to add a
macro definition into its internal table. After this,
any appearance of the macro symbol in your
source will be replaced with the macro expansion

– E.g.:
#define PI 3.14159

…

int area = radius * PI;

This will be exactly equivalent to:
int area = radius * 3.14159;

– NB: there is no ‘=‘, nor any ‘;’ in the definition!
34

Basic Functions

35

Predefined Functions

• C++ has standard libraries full of functions for
our use!

• Must "#include" appropriate library
– e.g.,

• <cmath>, <cstdlib> (Original "C" libraries)

• <iostream> (for cout, cin)

3-36
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

2/18/2014

13

The Function Call

• Sample function call and result assignment:
theRoot = sqrt(9.0);

– The expression "sqrt(9.0)" is known as a
function call, or function invocation

– The argument in a function call (9.0) can be a
literal, a variable, or a complex expression

– A function can have an arbitrary number of arguments

– The call itself can be part of an expression:
• bonus = sqrt(sales * commissionRate)/10;

• A function call is allowed wherever it’s legal to use
an expression of the function’s return type

3-37
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

More Predefined Functions

• #include <cstdlib>

– Library contains functions like:
• abs() // Returns absolute value of an int

• labs() // Returns absolute value of a long int

• *fabs() // Returns absolute value of a float

– *fabs() is actually in library <cmath>!
• Can be confusing

• Remember: libraries were added after C++ was
"born," in incremental phases

• Refer to appendices/manuals for details

3-38
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

Even More Math Functions:
Display 3.2 Some Predefined

Functions (1 of 2)

3-39
Copyright © 2012 Pearson Addison-Wesley.

All rights reserved.

2/18/2014

14

Even More Math Functions:
Display 3.2 Some Predefined

Functions (2 of 2)

3-40
Copyright © 2012 Pearson Addison-Wesley.

All rights reserved.

Random Number Generator

• Return "randomly chosen" number

• Used for simulations, games
– rand()

• Takes no arguments

• Returns value between 0 & RAND_MAX

– Scaling
• Squeezes random number into smaller range

rand() % 6

• Returns random value between 0 & 5

– Shifting
rand() % 6 + 1
• Shifts range between 1 & 6 (e.g., die roll)

3-41
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

Random Number Seed
• Pseudorandom numbers

– Calls to rand() produce given "sequence"
of random numbers

• Use "seed" to alter sequence
srand(seed_value);
– void function

– Receives one argument, the "seed"

– Can use any seed value, including system time:
srand(time(0));

– time() returns system time as numeric value

– Library <time> contains time() functions

3-42
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

2/18/2014

15

Random Examples

• Random double between 0.0 & 1.0:
(RAND_MAX – rand())/static_cast<double>(RAND_MAX)

– Type cast used to force double-precision division

• Random int between 1 & 6:
rand() % 6 + 1

– "%" is modulus operator (remainder)

• Random int between 10 & 20:
rand() % 10 + 10

3-43
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

Programmer-Defined Functions

• Write your own functions!

• Building blocks of programs
– Divide & Conquer

– Readability

– Re-use

• Your "definition" can go in either:
– Same file as main()

– Separate file so others can use it, too

3-44
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

Components of Function Use

• 3 Pieces to using functions:
– Function Declaration/prototype

• Information for compiler

• To properly interpret calls

– Function Definition
• Actual implementation/code for what

function does

– Function Call
• Transfer control to function

3-45
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

2/18/2014

16

Function Declaration

• Also called function prototoype
• An "informational" declaration for compiler
• Tells compiler how to interpret calls

– Syntax:
<return_type> FnName(<formal-parameter-list>);

– Example:
double totalCost(int numberParameter,

double priceParameter);

• Placed before any calls
– In declaration space of main()
– Or above main() in global space

• Detail: parameter types are manadatory, but names
are optional

3-46
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

Function Definition
• Implementation of function

• Just like implementing function main()

• Example:

double totalCost(int numberParameter,

double priceParameter)

{

const double TAXRATE = 0.05;

double subTotal;

subtotal = priceParameter * numberParameter;

return (subtotal + subtotal * TAXRATE);

}

3-47
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

Function Definition Placement
• Placed after function main()

– NOT "inside" function main()!

• Functions are "equals"; no function is ever
"part" of another

• Formal parameters in definition
– "Placeholders" for data sent in

• "Variable name" used to refer to data in definition

• return statement
– Sends data back to caller

3-48
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

2/18/2014

17

Function Call
• Just like calling predefined function

bill = totalCost(number, price);

• Recall: totalCost returns double value
– Assigned to variable named "bill"

• Arguments here: number, price
– Recall arguments can be literals, variables,

expressions, or combination

– In function call, arguments often called
"actual arguments"
• Because they contain the "actual data" being sent

3-49
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

Function Example:
Display 3.5 A Function to Calculate Total Cost (1 of 2)

3-50
Copyright © 2012 Pearson Addison-Wesley.

All rights reserved.

Function Example:
Display 3.5 A Function to Calculate Total Cost (1 of 2)

3-51
Copyright © 2012 Pearson Addison-Wesley.

All rights reserved.

2/18/2014

18

Parameter vs. Argument
• Terms often used interchangeably

• Formal parameters/arguments
– In function declaration

– In function definition’s header

• Actual parameters/arguments
– In function call

• Technically parameter is "formal" piece
while argument is "actual" piece*
– *Terms not always used this way

3-52
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

Declaring Void Functions

• “void” functions are called for side effects;
don’t return any usable value

• Declaration is similar to functions returning a
value, but return type specified as "void"

• Example:

– Function declaration/prototype:
void showResults(double fDegrees,

double cDegrees);

• Return-type is "void"

• Nothing is returned

3-53
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

More on Return Statements

• Transfers control back to "calling" function

– For return type other than void, MUST have
return statement

– Typically the LAST statement in
function definition

• return statement optional for void functions

– Closing } would implicitly return control from
void function

3-54
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

2/18/2014

19

Preconditions and Postconditions

• Similar to "I-P-O" discussion

• Comment function declaration:
void showInterest(double balance, double rate);
//Precondition: balance is nonnegative account balance
// rate is interest rate as percentage
//Postcondition: amount of interest on given balance,
// at given rate …

• Often called Inputs & Outputs

3-55
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

main(): "Special"
• Recall: main() IS a function

• "Special" in that:
– One and only one function called main()

will exist in a program

• Who calls main()?
– Operating system

– Tradition holds it should have return statement
• Value returned to "caller"  Here: operating system

– Should return "int" or "void"

3-56
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

Scope Rules
• Local variables

– Declared inside body of given function

– Available only within that function

• Can have variables with same names declared in different
functions
– Scope is local: "that function is it’s scope"

• Local variables preferred
– Maintain individual control over data

– Need to know basis

– Functions should declare whatever local data needed to "do their job"

3-57
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

2/18/2014

20

Global Constants
and Global Variables

• Declared "outside" function body
– Global to all functions in that file

• Declared "inside" function body
– Local to that function

• Global declarations typical for constants:
– const double TAXRATE = 0.05;

– Declare globally so all functions have scope

• Global variables?
– Possible, but SELDOM-USED

– Dangerous: no control over usage!

3-58
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

Blocks
• Declare data inside compound statement

– Called a "block"

– Has "block-scope"

• Note: all function definitions are blocks!
– This provides local "function-scope"

• Loop blocks:
for (int ctr=0;ctr<10;ctr++)
{
sum+=ctr;

}
– Variable ctr has scope in loop body block only

3-59
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

Nested Scope

• Same name variables declared in
multiple blocks

• Very legal; scope is "block-scope"

– No ambiguity

– Each name is distinct within its scope

3-60
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

2/18/2014

21

Arrays

61

Arrays

• An array is an aggregate (grouping under a common
name) of related data items that all have the same data
type

• Arrays can be of any data type we choose.

• Arrays are static in that they remain the same size
throughout program execution.

• An array’s data items are stored contiguously in memory

• To declare an array of 5 integers called “numbers”, you
would use:

int numbers[5];

An Array in Memory

5-63
Copyright © 2012 Pearson Addison-Wesley.

All rights reserved.

2/18/2014

22

Array Declaration and Initialization

int numbers[5];

• This declaration sets aside a chunk of memory that is big
enough to hold 5 integers.

• It does not initialize those memory locations to 0 or any other
value. They contain garbage.

• Initializing an array may be done with an array initializer, as in :

int numbers[5] = { 5, 2, 6, 9, 3 } ;

5 2 6 9 3numbers

Auto-Initializing Arrays

• If fewer values than size supplied:
– Fills from beginning

– Fills "rest" with zero of array base type

• If array-size is left out
– Declares array with size required based on

number of initialization values

– Example:
int b[] = {5, 12, 11};
• Allocates array b to size 3

5-65
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

Array Declaration and Initialization

• A special case is an “array of chars”:
char name[5] ;

• As mentioned earlier, a C-string is in fact an array of chars,
usually ending in a 0
– The 0-valued char at the end is called a “null terminator”

– Strings do not necessarily have to be null-terminated.

• Initializing a char array may be done the usual way, as in:
char name[5] = {‘J’, ‘o’, ‘h’, ‘n’, 0 };

…or with a string constant:
char name[5] = “John” ;

‘J’ ‘o’ ‘h’ ‘n’ ‘\0’name

2/18/2014

23

Accessing Array Elements

• You use the standard bracketed subscript notation to
access elements in an array:

cout << “The third element is ” << numbers[2];

would give the output

The third element is 6

• Subscripts are integers and always begin at zero.

5 2 6 9 3numbers

0 1 2 3 4

Accessing Array Elements (con’t)

• A subscript can also be any expression that evaluates
to an integer.

numbers[(a + b) * 2] ;

• Caution! C++ does not do bounds checking for simple
arrays, so you must ensure you are staying within
bounds

Defined Constant as Array Size

• Always use defined/named constant for
array size

• Example:
const int NUMBER_OF_STUDENTS = 5;
int score[NUMBER_OF_STUDENTS];

• Improves readability

• Improves versatility

• Improves maintainability

5-69
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

2/18/2014

24

Arrays in Functions

• As arguments to functions
– Indexed variables

• An individual "element" of an array can be
function parameter

– Entire arrays
• All array elements can be passed as

"one entity"

• As return value from function
– Can be done  chapter 10

5-70
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

Indexed Variables as Arguments
• Indexed variable handled same as simple

variable of array base type

• Given this function declaration:
void myFunction(double par1);

• And these declarations:
int i; double n, a[10];

• Can make these function calls:
myFunction(i); // i is converted to double
myFunction(a[3]); // a[3] is double
myFunction(n); // n is double

5-71
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

Entire Arrays as Arguments

• Formal parameter can be entire array

– Argument then passed in function call
is array name

– Called "array parameter"

• Send size of array as well

– Typically done as second parameter

– Simple int type formal parameter

5-72
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

2/18/2014

25

Entire Array as Argument Example:
Display 5.3 Function with an Array Parameter

5-73
Copyright © 2012 Pearson Addison-Wesley.

All rights reserved.

Entire Array as Argument Example

• Given previous example:

• In some main() function definition,
consider this call:
int score[5], numberOfScores = 5;
fillUp(score, numberOfScores);

– 1st argument is entire array

– 2nd argument is integer value

– Note no brackets in array argument!

5-74
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

Array as Argument: How?

• What’s really passed?

• Think of array as 3 "pieces"

– Address of first indexed variable (arrName[0])

– Array base type

– Size of array

• Only 1st piece is passed!

– Just the beginning address of array

– Very similar to "pass-by-reference"

5-75
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

2/18/2014

26

Array Parameters
• May seem strange

– No brackets in array argument

– Must send size separately

• One nice property:
– Can use SAME function to fill any size array!

– Exemplifies "re-use" properties of functions

– Example:
int score[5], time[10];
fillUp(score, 5);
fillUp(time, 10);

5-76
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

Multidimensional Arrays

• Arrays with more than one index
– char page[30][100];

• Two indexes: An "array of arrays"

• Visualize as:
page[0][0], page[0][1], …, page[0][99]
page[1][0], page[1][1], …, page[1][99]
…
page[29][0], page[29][1], …, page[29][99]

• C++ allows any number of indexes
– Typically no more than two

5-79
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

Multidimensional Array Parameters

• Similar to one-dimensional array
– 1st dimension size not given

• Provided as second parameter

– 2nd dimension size IS given

• Example:
void DisplayPage(const char p[][100], int sizeDimension1)
{
for (int index1=0; index1<sizeDimension1; index1++)
{

for (int index2=0; index2 < 100; index2++)
cout << p[index1][index2];

cout << endl;
}

}

5-80
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

2/18/2014

27

Array Limitations

• Simple arrays have limitations

– Array out-of-bounds access

– No resizing

– Hard to get current size

– Not initialized

– Much of this Is due to issues of efficiency and
backwards-compatibility, which are high priorities
in C/C++

• Later, we will learn about the vector class,
which addresses many of these issues

81

Structures

82

Structures

• 2nd aggregate data type: struct

• Recall: aggregate meaning "grouping"

– Recall array: collection of values of same type

– Structure: collection of values of different types

• Treated as a single item, like arrays

• Major difference: Must first "define" struct

– Prior to declaring any variables

6-83
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

2/18/2014

28

Structure Types
• Define struct globally (typically)

• No memory is allocated
– Just a "placeholder" for what our struct

will "look like"

• Definition:
struct CDAccountV1 Name of new struct "type"
{

double balance; member names
double interestRate;
int term;

};

6-84
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

Declare Structure Variable

• With structure type defined, now declare
variables of this new type:
CDAccountV1 account;

– Just like declaring simple types

– Variable account now of type CDAccountV1

– It contains "member values"

• Each of the struct "parts"

6-85
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

Accessing Structure Members

• Dot Operator to access members

– account.balance

– account.interestRate

– account.term

• Called "member variables"

– The "parts" of the structure variable

– Different structs can have same name
member variables
• No conflicts

6-86
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

2/18/2014

29

struct Example
#include <iostream>

using namespace std;

struct Account {

double balance;

double interestRate;

int term;

};

Account getAccountInfo(void);

void printAccountInfo(Account acct);

int main(int argc, char *argv[]) {

Account myAcct;

myAcct = getAccountInfo();

printAccountInfo(myAcct);

return 0;

}

struct Example (cont)
Account getAccountInfo(void) {

Account acct;

cout << “Enter balance: “;

cin >> acct.balance;

cout << “Enter interest rate: “;

cin >> acct.interestRate;

cout << “Enter account term: “;

cin >> acct.ter,;

return acct;

}

void printAccountInfo(Account acct) {

cout.setf(ios::fixed);

cout.setf(ios::showpoint);

cout.precision(2);

cout << “Your balance is $“ << acct.balance

<< “, with an interest rate of “ << acct.interestRate

<< “\nThe term is “ << account.term << “ months\n”;

}

Structure Pitfall
• Semicolon after structure definition

– ; MUST exist:
struct WeatherData
{

double temperature;
double windVelocity;

};  REQUIRED semicolon!

– Required since you "can" declare structure
variables in this location

6-92
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

2/18/2014

30

Structure Assignments

• Given structure named CropYield

• Declare two structure variables:
CropYield apples, oranges;

– Both are variables of "struct type CropYield"

– Simple assignments are legal:
apples = oranges;
• Simply copies each member variable from apples

into member variables from oranges

6-93
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

Structures as Function Arguments

• Passed like any simple data type
– Pass-by-value

– Pass-by-reference (covered later)

– Or combination

• Can also be returned by function
– Return-type is structure type

– Return statement in function definition
sends structure variable back to caller

6-94
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

Initializing Structures

• Can initialize at declaration

– Example:
struct Date
{

int month;
int day;
int year;

};
Date dueDate = {12, 31, 2003};

– Declaration provides initial data to all three member
variables

6-95
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

2/18/2014

31

Structures vs Classes

• Structures have existed since the early days of
C, due to the importance of being able to
aggregate heterogeneous data about a single
entity

• OOP is a natural follow-on to structured data

• So, in a manner of speaking, classes
supersedes structures

96

Basic Pointers

97

Basic Pointers

• Early on in computer and programming
language design, it was found important to be
able to flexibly address different variables
under program control (think about
addressing array elements with variable
indices)

• Computer architects added ability to do
“indirect” addressing: taking a variable value
(i.e., memory location contents) and applying
that value as the numerical location of
another variable

98

2/18/2014

32

Basic Pointers

• We can do this in both directions:

– Put a numerical value into a variable (i.e., memory
location) and tell the processor to do an operation
on the value in the location addressed by the first
value

– Given a variable (again, a memory location), take
it’s memory address in RAM, which is a number,
and store this number inside some other variable

• This requires the cooperation of the compiler, which
decides, and therefore knows, where the various
variables are being stored in RAM.

99

Pointer Introduction

• Pointer definition:
– A variable holding memory address of another

variable

– an expression evaluating to such a value

• We use the ‘*’ (“points to”) and ‘&’ (“address
of”) unary operators to work with pointers

• Note distinction between a pointer--which is a
numerical address and therefore always a
certain size (number of bytes) on a given
computer—and the type of data it “points to”,
which can be of different sizes

10-100
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

Pointer Variables

• Pointers are "typed"

– Can store pointer in variable

– Not int, double, etc.
• Instead: A POINTER to int, double, etc.!

• Example:
double *p;

– p is declared a "pointer to double" variable

– Can hold pointers to variables of type double
• Not other types! (unless typecast, but could be dangerous)

10-101
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

2/18/2014

33

Declaring Pointer Variables

• Pointers declared like other types

– Add "*" before variable name

– Produces "pointer to" that type

• "*" must be before each variable

• int *p1, *p2, v1, v2;

– p1, p2 hold pointers to int variables

– v1, v2 are ordinary int variables

10-102
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

Addresses and Numbers

• Pointer is an address

• Address is an integer

• Pointer is NOT an integer!
– Not crazy  abstraction!

• C++ forces pointers be used as
addresses
– Cannot be used as numbers

– Even though it "is a" number

10-103
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

Pointing

• Terminology, view

– Talk of "pointing", not "addresses"

– Pointer variable "points to" ordinary variable

– Leave "address" talk out

• Makes visualization clearer

– "See" memory references

• Arrows

10-104
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

2/18/2014

34

Pointing to …
• int *p1, *p2, v1, v2;

p1 = &v1;
– Sets pointer variable p1 to "point to" int

variable v1

• Operator, &
– Determines "address of" variable

• Read like:
– "p1 equals address of v1"

– Or "p1 points to v1"

10-105
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

Pointing to …
• Recall:

int *p1, *p2, v1, v2;
p1 = &v1;

• Two ways to refer to v1 now:
– Variable v1 itself:

cout << v1;

– Via pointer p1:
cout *p1;

• Dereference operator, *
– Pointer variable "derereferenced"

– Means: "Get data that p1 points to"

10-106
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

"Pointing to" Example
• Consider:

v1 = 0;
p1 = &v1;
*p1 = 42;
cout << v1 << endl;
cout << *p1 << endl;

• Produces output:
42
42

• p1 and v1 refer to same variable

10-107
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

2/18/2014

35

& Operator

• The "address of" operator

• Also used to specify call-by-reference
parameter (more on this later)

– No coincidence!

– Recall: call-by-reference parameters pass
"address of" the actual argument

• Operator’s two uses are closely related

10-108
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

Pointer Assignments

• Pointer variables can be "assigned":
int *p1, *p2;
p2 = p1;

– Assigns one pointer to another

– "Make p2 point to where p1 points"

• Do not confuse with:
*p1 = *p2;

– Assigns "value pointed to" by p1, to "value
pointed to" by p2

10-109
Copyright © 2012 Pearson
Addison-Wesley. All rights

reserved.

Pointer Assignments Graphic:
Display 10.1 Uses of the Assignment Operator with

Pointer Variables

10-110
Copyright © 2012 Pearson Addison-Wesley.

All rights reserved.

2/18/2014

36

Pointer Math

• Why is a pointer != an integer? Consider:

int numbers[50];

int *numPtr;

numPtr = numbers[25]; // NOT LEGAL!!!

numPtr = &numbers[25]; // Okay

*numPtr = 47; // same as “numbers[25] = 47”

numPtr += 1;

// Above adds 4(!), not 1, to value of numPtr,

// since the thing numPtr points to (an int)

// occupies 4 bytes

111

Simulated “Pass by Reference”

• Some programming languages provide
mechanism for called function to have direct
access to variables used in the calling function

• We can simulate this by using pointers (see
following slide)

• C++ added true “call by reference” – we will
see this later on

112

Simulated “Pass by Reference”

• Calling function:

int x = 1;

// pass in reference to (actually, pointer to)

// our argument variable “x”

add1(&x);

cout << x; // will output 2!

• Called function:

void add1(int *var) {

*var = *var + 1;

}

113

2/18/2014

37

Command-Line Arguments

114

Command-Line Arguments

• Anything in the shell command line (including the name of the
program to be executed) will be read as a command line argument.

• All text entered will be stored in the C-string array specified in main
(typically argv by convention).
– myprog.out Hi
– Results in “myprog.out” stored at argv[0], and “Hi” stored at argv[1]

• Individual arguments can be separated by spaces like so
– myprog.out foo 123 bar
– Results in “foo” stored at argv[1], “123” at argv[2] and “bar” at argv[3]

int main (int argc, char *args[]){

for(int i = 0; i < argc; i++){

cout << “Arg “ << i << “: “ << argv[i] << endl;

}

}

}

115

