
Polymorphism II

CMSC 202

10/2010 2

Topics

 Constructors and polymorphism

 The clone method

 Abstract methods

 Abstract classes

10/2010 3

Constructors and Polymorphism

 A constructor for the base class is automatically called during
construction of a derived class.

 This call propagates up the inheritance hierarchy until the

constructor for every base class is called.

 Why does this make sense?

 The constructor’s job is to see that the object is completely
built.

 The derived class cannot have access to the base class’
private instance variables.

 The base class constructor must be called to initialize its
instance variables.

 Therefore, all base class constructors must be called to
fully initialize the entire derived class object.

More Vehicles
public class Aircraft extends Vehicle {

 public Aircraft(){

 super();

 System.out.println("Aircraft");

 }

}

public class Automobile extends Vehicle {

 public Automobile(){

 super();

 System.out.println("Automobile");

 }

}

public class Watercraft extends Vehicle {

 public Watercraft(){

 super();

 System.out.println("Watercraft");

 }

}

public class Vehicle {

 public Vehicle(){

 System.out.println("Vehicle");

 }

}

 In each constructor we are making explicit calls to base class constructors.
 Which constructor is executed first?

Vehicle Station
public class VehicleStation {

 private Vehicle auto = new Automobile();

 private Aircraft aircraft = new Aircraft();

 public VehicleStation(){

 System.out.println("Vehicle Station");

 }

 public static void main(String[] args){

 VehicleStation station = new VehicleStation();

 }

}

Vehicle
Automobile
Vehicle
Aircraft
Vehicle Station

Output

Note that base class constructors are called implicitly if there is no explicit call
super();

1. Base class constructors, recursively from the top of the hierarchy

2. Instance variables in order of declaration

3. The body of the derived class constructor

Order of Construction

6

Derived Class Copy Constructors

Derived class copy constructors must make an explicit call

to the base class copy constructor.

public Aircraft(Aircraft other){

 super(other); // polymorphism

 // initialize aircraft instance variables

}

 This copy constructor will invoke its base class' copy
constructor.
 We can reuse the code we have created to copy Vehicles

because an Aircraft is a Vehicle.
 Java will upcast the other Aircraft to a Vehicle.

public Vehicle(Vehicle other){

 // initialize Vehicle instance variables

}

10/2010 7

A First Look at the clone Method

 Every object inherits a method named clone from the

class Object.

 The method clone has no parameters.

 Its purpose is to return a deep copy of the calling object.

 However, the inherited version of the method was not

designed to be used as is.

 Each class is expected to override it with a more appropriate

version.

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

10/2010 8

A First Look at the clone Method

 The heading for the clone method defined in the Object
class is:

protected Object clone()

 The heading for a clone method that overrides the clone
method in the Object class can differ somewhat from the
heading above.

 A change to a more permissive access, such as from

protected to public, is always allowed when overriding a
method definition.

 Changing the return type from Object to the type of the

class being cloned is allowed because every class is a
descendent class of the class Object. This is an
example of a covariant return type.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

9

A First Look at the clone Method

 If a class has a copy constructor, the clone
method for that class can use it to create the copy
returned by the clone method.

Another example:

public Vehicle clone(){

 // return a copy of this Vehicle

 return new Vehicle(this);
}

public Aircraft clone(){

 // return a copy of this Aircraft

 return new Aircraft(this);

}

10/2010 10

Pitfall: Limitations of Copy Constructors

 The copy constructor and clone method for a

class appear to do the same thing.

 However, there are cases where only a clone will

work.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

10/2010 11

Cloning a VehicleStation
public class VehicleStation {

 private Vehicle[] vehicles = new Vehicle[3];

 public VehicleStation(){

 vehicles[0] = new Aircraft();

 vehicles[1] = new Automobile();

 vehicles[2] = new Watercraft();

 }

 public VehicleStation(VehicleStation other){

 for(int i = 0; i < vehicles.length; i++){

 vehicles[i] = new Vehicle(other.vehicles[i]);

 }

 }

}

10/2010 12

Pitfall: Limitations of Copy Constructors

 The statement

 vehicles[i] = new Vehicle(other.vehicles[i]);

only copies the base class (Vehicle) part of each Vehicle, not the

specific stuff in each derived class.

 We need to call the copy constructor for the derived class to make an
appropriate deep copy, but copy constructors must be called by name, and
we don’t know what kind of Vehicle is really stored in each element of the
array.

 If the clone method is used instead of the copy constructor, then (because
of polymorphism) a true copy is made, even from objects of a derived class
(e.g., Automobile, Aircraft, Watercraft).

 The correct statement is

 vehicles[i] = other.vehicles[i].clone();

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

10/2010 13

Introduction to Abstract Classes
public class Employee

{

 private String name;

 private Date hireDate;

 // constructors, accessors, mutators, equals, toString

}

public class HourlyEmployee extends Employee

{

 private double wageRate;

 private double hours; //for the month

 public double getPay() {return wageRate * hours;}

 // constructors, accessors, mutators, equals, toString

}

public class SalariedEmployee extends Employee

{

 private double salary; //annual

 public double getPay() { return salary / 12; }

 // constructors, accessors, mutators, equals, toString

}

10/2010 14

samePay
 Suppose that we decide that it will often be necessary to

determine if two Employees have the same pay.

 We decide to implement a method named samePay in the

Employee class.

 This method should be able to compare the pays for any kinds of

Employees.

public boolean samePay(Employee other)

{

 return(this.getPay() == other.getPay());

}

10/2010 15

Problem with samePay

 The method samePay calls getPay.

 While getPay is defined for SalariedEmployees and
HourlyEmployees, there is no meaningful
implementation of getPay for a generic Employee.

 We can’t implement getPay without knowing the type of
Employee.

 Solution:

 Require that classes derived from Employee (who know
what type they are) implement a suitable getPay method
that can then be used from samePay.

 Java provides this capability through the use of abstract
methods.

10/2010 16

Introduction to Abstract Classes

 An abstract method is like a placeholder for a method that will
be fully defined in a descendent class.

 It postpones the definition of a method.
 It has a complete method heading to which the modifier
abstract has been added.

 It cannot be private.
 It has no method body, and ends with a semicolon in place of

its body.

 public abstract double getPay();

 public abstract void doIt(int count);

 The body of the method is defined in the derived classes.

 The class that contains an abstract method is called an abstract
class.

Copyright © 2008 Pearson Addison-Wesley.
 All rights reserved

10/2010 17

Abstract Class

 If a class has at least one abstract method, it must be
declared as an abstract class.

 (Note that a class that has no abstract methods may also
be declared as abstract, if desired. For example, a class
that contains only instance variables.)

 An abstract class must have the modifier abstract
included in its class heading.

public abstract class Employee

{

 private instanceVariables;

 . . .

 public abstract double getPay();

 . . .

}

 Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

10/2010 18

Abstract Class

 An abstract class can have any number of abstract

and/or fully defined methods.

 If a derived class of an abstract class adds to or does not

define all of the abstract methods,

 it is abstract also, and

 must add abstract to its modifier.

 A class that is not abstract is called a concrete class.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

10/2010 19

Abstract Employee Class

public abstract class Employee

{

 private String name;

 private Date hireDate;

 public abstract double getPay();

 // constructors, accessors, mutators, equals, toString

 public boolean samePay(Employee other)

 {

 return(this.getPay() == other.getPay());

 }

}

10/2010 20

Pitfall: You Cannot Create Instances of an Abstract

Class

 An abstract class can only be used to derive more
specialized classes.

 While it may be useful to discuss employees in general, in reality
an employee must be a salaried worker or an hourly worker.

 An abstract class constructor cannot be used to create an
object of the abstract class.

 However, a derived class constructor will include an invocation
of the abstract class constructor in the form of super.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

10/2010 21

An Abstract Class Is a Type

 Although an object of an abstract class cannot be

created, it is perfectly fine to have a parameter of an

abstract class type.

 This makes it possible to plug in an object of any of its

descendent classes.

 It is also fine to use a variable of an abstract class type,

as long is it names objects of its concrete descendent

classes only.

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

