
Introduction

CMSC 202H

Fall 2011

1

Instructor

• Mr. John Park

– Lecture Section 01

• Tues/Thu 1:00 – 2:15 pm, Sondheim 110

– Labs:

• Tuesday 2:30 – 3:20 pm, Engineering 104

2

What is CMSC 202?

• An introduction to object-oriented
programming (OOP) and object-oriented
design (OOD)

• Uses the Java programming language

• Uses the Eclipse integrated development
environment (IDE)

• Strong emphasis on proper program design

• Course website (note the ‘H’ at the end):
www.cs.umbc.edu/courses/undergraduate/202/fall11H/

 3

http://www.cs.umbc.edu/courses/undergraduate/202/fall11/

How is CMSC 202H different from
regular202 sections?

1. Presumes a basic knowledge of Java syntax

– Originally designed as an option for students
taking 202 who had already taken Java in high
school (e.g.: AP Computer Science A)—
We didn’t want these students to be bored in the
first half (learning Java), and end up not waking
up in time to do well on the second half
(applying OOP)!

4

How is CMSC 202H different from
other 202 sections?

1. Prior Java knowledge (cont.):

– AP CompSci A syllabus only has minimal common
denominator; therefore, we spend first part of
202H reviewing all basic Java elements

– People who don’t know Java, but have significant
experience with another language–with similar
syntax– should do fine

• You know basic Java: perfect!

• Don’t know Java, but do know C/C++: still great

• Only know JavaScript or Python: possible, but need
work

5

How is CMSC 202H different from
other 202 sections?

1. Prior Java knowledge (cont.):

– Important decision, for those w/only Python
experience:

• How well do I understand the semantics of if-
statements, while-loops, functions, etc.

• How easy was it for me to pick up Python syntax?

6

How is CMSC 202H different from
other 202 sections?

2. Almost same pace, but deeper coverage:

– We will move through the basic language
elements more quickly than other 202 sections

– We will then use end of each lecture to explore
the concept in greater depth

• E.g.: we will go deeply into the motivation for
generics, its history, and underlying implementation

4. Additional advanced topics at end of term:

– Will cover threads, Swing, event-driven and
asynchronous programming, etc.

7

How is CMSC 202H different from
other 202 sections?

5. Different project structure

– This is one of the biggest differences between
202 and 202H

– Single large project broken up into several phases

– At end of term, you will have built a large system
that does something significant and practical.

8

How is CMSC 202H NOT different?

Some misconceptions about 202H vs. 202:

• “202H exams are *much* harder than in
202!”

– Exams are structured very similarly, and are at
roughly equivalent levels of difficulty.

• “The projects are so much more work!”

– I gauge the assignments to make the number of
hours of work across the projects about the
same as in regular 202. However, it requires
more careful THINKING (quality, not quantity)

 9

Any Other Questions About 202H?

• Are other CMSC courses dependent upon
202H as a prerequisite?

• What does the ‘H’ designation get me?

• Are you an easy grader?

• Do you bite?

10

Procedural vs. OO Programming

Procedural
• Modular units: functions
• Program structure: hierarchical
• Data and operations are not

bound to each other
• Examples:

– C, Pascal, Basic, Python

Object-Oriented (OO)
• Modular units: objects
• Program structure: a graph
• Data and operations are

bound to each other
• Examples:

– Java, C++, Ruby

A Collection of
Objects

A Hierarchy of
Functions

11

What’s an Object?

• Must first define a class
– A data type containing:

• Attributes – make up the object’s “state”

• Operations – define the object’s “behaviors”

12

Operations
(behaviors)

Type

Attributes
(state)

String

sequence of characters
more?

compute length
concatenate
test for equality
more?

Bank Account

account number
owner’s name
balance
interest rate
more?

deposit money
withdraw money
check balance
transfer money
more?

So, an Object is…

• A particular instance of a class

13

For any of these accounts, one can…
• Deposit money
• Withdraw money
• Check the balance
• Transfer money

Bergeron’s Account Frey’s Account Mitchell’s Account

43-261-5
Susan Mitchell
$825.50
2.5%

12-345-6
Ryan Bergeron
$1,250.86
1.5%

65-432-1
Dennis Frey
$5.50
2.7%

Why Java for 202?

• Popular modern OO language

• Wide industry usage

• Used in many types of applications

• Desirable features

– Object-oriented

– Portability (cross-platform)

– Easy handling of dynamic variables

– Garbage collection

– Built-in GUI libraries

14

Java History

• Created by Sun Microsystems team led by James
Gosling (1991)

• Originally designed for programming home

appliances
– Difficult task because appliances are controlled by a

wide variety of computer processors
– Writing a compiler (translation program) for each type

of appliance processor would have been very costly
– Solution: two-step translation process

• Compile, then
• Interpret

15

Interpreters, Compilers, and the JVM

16

Interpreter is unique to each platform

interpret
source code

Interpreted Languages (e.g. JavaScript, Perl, Ruby, Python)

Small, easy to write

Interpreter translates code
into binary and executes it

compile
source code

Compiled Languages (e.g. C, C++)

binary code
execute

Compiler is unique to
each platform

JVM is unique to each platform
compile interpret

source code bytecode

Java
Bytecode is platform
independent

Java Virtual Machine
(JVM)

Compiling and Running C/C++

17

C/C++
Code

Linux
binary

Windows
binary

Linux
executable

Windows
executable

Project Library
for Linux

Project Library
for Windows

Linux C/C++ linker

Windows C/C++ linker

Compiling and Running Java

18

Java
Code

Java
Bytecode

JRE for Linux

JRE for
Windows

Java compiler

Hello.java

javac Hello.java

Hello.class

Java interpreter (JVM)
translates bytecode to
machine code in JRE

Java Terminology
• Java acronyms are plentiful and confusing. Here are the basics.

– JVM – Java Virtual Machine
• Translates Java bytecode to machine code

– API – Application Programming Interface
• The classes/methods/constants provided by libraries

– JRE – Java Runtime Environment
• The JVM and the Java API together

– JDK (formerly SDK) – Java Development Kit
• JRE + tools (compiler, debugger) for developing Java applications

– Java SE – Java Platform, Standard Edition
• The given edition of the JRE – standard being the most common
• There are other versions that are tailored toward mobile devices and web

environments

• To learn more about JDK, JRE, etc, visit:
– http://www.oracle.com/technetwork/java/javase/tech/index.html

19

http://www.oracle.com/technetwork/java/javase/tech/index.html

Java SE Versions

• Current version of Java: Java 7, also known as
Java 1.7 or Java 1.7.0

• Previous version: Java 6, also known as Java
1.6, Java 1.6.0 or “Java 2 SE Version 6”

– This is the version running on GL servers

• To learn more about Java version naming, see:

http://java.sun.com/javase/namechange.html

 20

http://java.sun.com/javase/namechange.html

Python vs. Java
• Python

• Java

21

print "Hello, world"

quotient = 3 / 4

if quotient == 0:

 print "3/4 == 0",

 print "in Python"

else:

 print "3/4 != 0"

public class Hello {

 public static void main(String[] args) {

 int quotient;

 System.out.println("Hello, world");

 quotient = 3 / 4;

 if (quotient == 0) {

 System.out.print("3/4 == 0");

 System.out.println(" in Java");

 } else {

 System.out.println("3/4 != 0");

 }

 }

}

Things to note:

• Everything has to be in some class

• We need a “main()”

• Statements end with “;”

• Variables must be declared

• “if/else” syntax different

• Statement blocks demarcated by “{...}”

• Comments are different

• Much that is similar

The Eclipse IDE

• An integrated development environment (IDE) for
writing Java programs. Contains (minimally):
– Editor
– Debugger
– Java compiler
– Java JVM

• Free (open source) download for
Windows/Linux/Mac
– See course “Resources” page on the CMSC 202

website

• Available in all OIT labs around campus
– We’ll show you more in Lab 1

22

Eclipse IDE Screenshot

23

