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What is a function?
• A function is a mapping from inputs to 

outputs

• Takes a set of inputs or parameters

• Produces a single or set of outputs

• Output is generally dependent on input
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Simple functions
• Boolean AND
- AND(a, b) -> c

• Addition
- Add(a, b) -> c

• Yards to Meters
- YtoM(y) -> c

• RGB to HSV
- HSVtoRGB(h,s,v) -> (r, g, b)

• Sorted list
- Sort({L}) -> {SL}
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Determining the mapping
• Computing the function is the process of 

determining the output from a given input

• Simplest approach is a look up table
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A B C
0 0 0
0 1 0
1 0 0
1 1 1

Boolean AND



Lookup Tables are insufficient

• How do we design a look up table for yards 
to meters?

• Better to use a simple algebraic equation

                    m = 0.9144 * y
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Can we compute any function?

• No! Some function are too complex to 
compute

• What does this mean for computer scientists?
- Machines can only perform tasks described by 

algorithms
- If a function is not computable, a computer can’t 

“solve” it

• How do we know what is computable?
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Turing Machine
• Theoretical computing machine developed by 

Alan Turing

• Composed of:
- a tape of cells (can be infinitely long)

- cells have a finite set of symbols

- a read/write head
- for a single step the read/write head can move one cell left or right

- a control unit
- for which there are a finite set of states; special states for START and HALT
- The current state coupled with the current symbol dictates next state and 

head movement
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Turing Machine
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Control
Unit

Read/Write Head



Turing Binary Add
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* 1 0 1 *State = START



Turing Binary Add
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* 1 0 1 *

Current State Current Cell Write Value Move Direction Next State

START * * LEFT ADD

ADD 0 1 RIGHT RETURN

ADD 1 0 LEFT CARRY

ADD * * RIGHT HALT

CARRY 0 1 RIGHT RETURN

CARRY 1 0 LEFT CARRY

CARRY * 1 LEFT OVERFLOW

OVERFLOW (any) * RIGHT RETURN

RETURN 0 0 RIGHT RETURN

RETURN 1 1 RIGHT RETURN

RETURN * * NO MOVE HALT

State = START



Church-Turing
• A function that is computable by a turing 

machine is Turing Computable

• Church-Turing thesis states that any 
computable function is Turing Computable

• Turing machine would be a universal 
computation machine

• Any other machine that can compute every 
function a Turing Machine can must be a 
universal machine as well
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Universal Language
• A programming language that can be used to 

define any Turing-computable function 
procedure

• Almost all modern languages have high-level 
complexity/abstraction for convenience, not 
universality

• Define a very simple language that is a 
universal language
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Bare Bones Language
• Works with only non-negative integers
- all other data types will be up to the programmer to define 

in terms of non-negative integers

• Allow for variable names

• End a statement with a ;

• Assignment operators:
- clear name;

- sets value of name to 0

- incr name;
- increases value of name by 1

- decr name;
- decreases value of name by 1 (unless 0)
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BBL Control
• One Control Structure
- while name not 0 do;

.

.

.
end;

• This will execute so long as the variable name 
does not hold the value 0
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Basic procedures
• How do we do direct assignment between 

variables?
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Basic procedures
• How do we do direct assignment between 

variables?

• Assignment without destruction? (x <- y)
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Basic procedures
• How do we do direct assignment between 

variables?

• Assignment without destruction? (x <- y)

• Adding two numbers? (z <- x + y)
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Basic procedures
• How do we do direct assignment between 

variables?

• Assignment without destruction? (x <- y)

• Adding two numbers? (z <- x + y)

• Multiplying two numbers? (z <- x * y)
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Basic procedures
• How do we do direct assignment between 

variables 

• Assignment without destruction? (x <- y)

• Adding two numbers? (z <- x + y)

• Multiplying two numbers? (z <- x * y)

• If-else?
- e.g., if X not 0 then S1 else S2
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Noncomputable functions

• Halting problem is an example of a 
noncomputable function

• Write a function that can predict whether a 
function will terminate or not

• Consider BB program:

while x not 0 do;
    incr x;
end;

• Termination depends on input value of x
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Proving the Halting Problem

• We can logically prove that the halting 
problem is non-computable

• Termination or not depends on input, so we 
make an special termination case useful for 
our proof

• A self-terminating program is a program that 
will terminate if it’s input values are set to an 
encoding of the the program code
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Program encoding
• Look at raw text of a program code

• Take the ASCII value of each character in the 
program code text and string them together into 
a single binary value
- This is a really huge number because program code is 

usually many many bytes long in text
- We don’t care because this is all theoretical!

• while -> ‘w’ - ‘h’ - ...
‘w’ = 01110111
‘h’ = 01101000

• 0111011101101000...
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Proof  direction
• Key idea: if we cannot predict whether a 

program is self-terminating then we cannot 
compute the halting problem in general 
- since there is at least one input case where we 

can’t: the self-terminating input case
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Proof: Step 1
• Propose existence of program, Oracle, that 

states whether the encoding of another 
program X is self-terminating
- that is, if program P sets its input to the value of its 

program’s encoding, program oracle returns a value  
1 if it halts, 0 otherwise
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enc(P)

Oracle

x = 0/1
x = 0: P is self-terminating
x = 1: P is NOT self-terminating



Proof: Step 2
• Propose a new program, Paradox defined as 

follows:
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enc(P)

Oracle

x = 0/1
while x not 0 do;
    ;
end;



Proof  Step 3
• Run Paradox through Oracle; 2 Possibilities
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enc(Paradox)

Oracle

x = 1

enc(Paradox)

Oracle

x = 0

Oracle says Paradox is
self-terminating

Oracle says Paradox is
NOT self-terminating



Proof: Step 4
• What happens when we actually run Paradox with 

it’s self encoding as input (self-terminating input)?
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enc(Paradox)

Oracle

x = 1
while x not 0 do;
    ;
end;

enc(Paradox)

Oracle

x = 0
while x not 0 do;
    ;
end;



Proof: Step 4
• What happens when we actually run 

Paradox?
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enc(Paradox)

Oracle

x = 1
while x not 0 do;
    ;
end;

enc(Paradox)

Oracle

x = 0
while x not 0 do;
    ;
end;

Loops forever!
Doesn’t halt!



Proof: Step 4
• What happens when we actually run 

Paradox?
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enc(Paradox)

Oracle

x = 1
while x not 0 do;
    ;
end;

enc(Paradox)

Oracle

x = 0
while x not 0 do;
    ;
end;

Won’t loop!
Does halt!



NP-Completeness
• Recall our time complexity analysis?

• Define a measure of how many steps it takes 
for an algorithm to complete based on the 
size of its input

• O(f(n)) means that a program’s time step 
complexity is dominated by the function f(n) 
- where n is the input size
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Complexity Classes
• O(c): constant; program has a fixed number of 

steps regardless of input size

• O(log(n)): number steps is dominated by a 
logarithmic growth in terms of the size of input

• O(n): dominated by linear in terms of n

• O(nlog(n)): dominated by nlogn term

• O(nc): dominated by polynomial in terms of n

• O(cn): dominated by exponential in terms of n
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Complexity Classes
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Tractability
• Generally we consider algorithms that can 

executed in Polynomial time or better to be 
tractable 
- These grow slowly enough that we can use them 

on large problems and computer speed will 
increase until its feasible

- Exists in complexity class P

• We claim that algorithms that are not 
bounded by a polynomial term as intractable
- these grow way to fast to be practical on any large 

problem
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Traveling Salesman (TSP)
• Given a set of n cities each 

at a different point in space 
(geography)

• Salesman starts from a home 
city and must visit each city 
exactly once and return 
home

• Salesman has a budget and 
must find a path that is 
cheap enough
- short in number of miles 
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Determinism and Non-determinism

• An algorithm whose steps are fully defined is 
deterministic
- will always execute the same way regardless of 

executor
- This is the kind of algorithm in which we program 

computers
- random numbers are even deterministic in terms of analysis, but in 

practice appear random to us

• An algorithm whose steps are not fully 
defined is non-deterministic
- Different executors may execute certain steps 

differently
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Algorithms for TSP

• Writing a deterministic algorithm for TSP 
requires an exponential number of steps

• A non-deterministic algorithm might only take 
a polynomial number of steps

Pick one of the possible paths, p
Compute distance of p, d
if d < allowable milage
    then (declare success)
    else  (declare failure) 
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Algorithms for Traveling Salesman

• Writing a deterministic algorithm for TSP 
requires an exponential number of steps

• A non-deterministic algorithm might only take 
a polynomial number of steps

Pick one of the possible paths, p
Compute distance of p, d
if d < allowable milage
    then (declare success)
    else  (declare failure) 
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How is a good one 
picked?



NP Class
• A problem is in the class NP if it can be 

solved with a non-deterministic polynomial 
time algorithm

• Any polynomial deterministic algorithm is in 
NP, but not all NP problems may be in P 
- we strongly believe they are not
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NP-Hard
• Class of problems for which we have no 

known solution in P

• We can prove that a new problem is NP-Hard 
if we can show that being able to solve it in P 
would allow us to solve another NP-Hard 
problems (that are also NP-Complete) in P
- Transform problems into the settings of others

• An NP-hard problem is at least as hard as the 
hardest problems in NP
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NP-Complete
• Class of problems that both exist in NP and are 

NP-Hard

• If we ever find a polynomial solution to a single 
NP-complete problem, then all NP-Complete 
problems can be solved in Polynomial time

• We strongly believe this cannot be done, but we 
have no proof

• Prove P = NP or P ≠ NP
- You’ll be hugely famous, and if you prove the former, 

you’ll have changed everything!
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