CS100: Theory of Computation
 Fall 2010

Instructor: James MacGlashan

What is a function?

- A function is a mapping from inputs to outputs
- Takes a set of inputs or parameters
- Produces a single or set of outputs
- Output is generally dependent on input

Simple functions

- Boolean AND
- AND(a, b) -> c
- Addition
- $\operatorname{Add}(\mathrm{a}, \mathrm{b})$-> c
- Yards to Meters
- YtoM(y) -> c
- RGB to HSV
- HSVtoRGB(h,s,v) -> (r, g, b)
- Sorted list
- Sort(\{L\}) -> \{SL\}

Determining the mapping

- Computing the function is the process of determining the output from a given input
- Simplest approach is a look up table
Boolean AND

A	B	C
0	0	0
0	1	0
1	0	0
1	1	1

Lookup Tables are insufficient

- How do we design a look up table for yards to meters?
- Better to use a simple algebraic equation

$$
m=0.9144 * y
$$

Can we compute any function?

- No! Some function are too complex to compute
- What does this mean for computer scientists?
- Machines can only perform tasks described by algorithms
- If a function is not computable, a computer can't "solve" it
- How do we know what is computable?

Turing Machine

- Theoretical computing machine developed by Alan Turing
- Composed of:
- a tape of cells (can be infinitely long)
- cells have a finite set of symbols
- a read/write head
- for a single step the read/write head can move one cell left or right
- a control unit
- for which there are a finite set of states; special states for START and HALT
- The current state coupled with the current symbol dictates next state and head movement

Turing Machine

Turing Binary Add

State $=$ START

Turing Binary Add

State $=$ START

Current State	Current Cell	Write Value	Move Direction	Next State
START	$*$	$*$	LEFT	ADD
ADD	0	1	RIGHT	RETURN
ADD	1	0	LEFT	CARRY
ADD	$*$	$*$	RIGHT	HALT
CARRY	0	I	RIGHT	RETURN
CARRY	I	0	LEFT	CARRY
CARRY	$*$	l	LEFT	OVERFLOW
OVERFLOW	(any)	$*$	RIGHT	RETURN
RETURN	0	0	RIGHT	RETURN
RETURN	I	I	RIGHT	RETURN
RETURN	$*$	$*$	NO MOVE	HALT

Church-Turing

- A function that is computable by a turing machine is Turing Computable
- Church-Turing thesis states that any computable function is Turing Computable
- Turing machine would be a universal computation machine
- Any other machine that can compute every function a Turing Machine can must be a universal machine as well

Universal Language

- A programming language that can be used to define any Turing-computable function procedure
- Almost all modern languages have high-level complexity/abstraction for convenience, not universality
- Define a very simple language that is a universal language

Bare Bones Language

- Works with only non-negative integers
- all other data types will be up to the programmer to define in terms of non-negative integers
- Allow for variable names
- End a statement with a;
- Assignment operators:
- clear name;
- sets value of name to 0
- incr name;
increases value of name by 1
- decr name;
- \quad decreases value of name by 1 (unless 0)

BBL Control

- One Control Structure
- while name not 0 do;
-
-

end;

- This will execute so long as the variable name does not hold the value 0

Basic procedures

- How do we do direct assignment between variables?

Basic procedures

- How do we do direct assignment between variables?
- Assignment without destruction? $(x<-y)$

Basic procedures

- How do we do direct assignment between variables?
- Assignment without destruction? $(x<-y)$
- Adding two numbers? $(z<-x+y)$

Basic procedures

- How do we do direct assignment between variables?
- Assignment without destruction? $(x<-y)$
- Adding two numbers? $(z<-x+y)$
- Multiplying two numbers? $\left(z<-x^{*} y\right)$

Basic procedures

- How do we do direct assignment between variables
- Assignment without destruction? $(x<-y)$
- Adding two numbers? $(z<-x+y)$
- Multiplying two numbers? $\left(z<-x^{*} y\right)$
- If-else?
- e.g., if X not 0 then S1 else S2

Noncomputable functions

- Halting problem is an example of a noncomputable function
- Write a function that can predict whether a function will terminate or not
- Consider BB program:
while x not 0 do; incr x ;
end;
- Termination depends on input value of x

Proving the Halting Problem

- We can logically prove that the halting problem is non-computable
- Termination or not depends on input, so we make an special termination case useful for our proof
- A self-terminating program is a program that will terminate if it's input values are set to an encoding of the the program code

Program encoding

- Look at raw text of a program code
- Take the ASCII value of each character in the program code text and string them together into a single binary value
- This is a really huge number because program code is usually many many bytes long in text
- We don't care because this is all theoretical!
- while -> 'w' - 'h' - ...
$' w '=01110111$
$' h '=01101000$
- 0111011101101000...

Proof direction

- Key idea: if we cannot predict whether a program is self-terminating then we cannot compute the halting problem in general
- since there is at least one input case where we can't: the self-terminating input case

Proof: Step 1

- Propose existence of program, Oracle, that states whether the encoding of another program X is self-terminating
- that is, if program P sets its input to the value of its program's encoding, program oracle returns a value 1 if it halts, 0 otherwise

Proof: Step 2

- Propose a new program, Paradox defined as follows:

Proof Step 3

- Run Paradox through Oracle; 2 Possibilities

enc(Paradox)

Oracle says Paradox is NOT self-terminating

Proof: Step 4

- What happens when we actually run Paradox with it's self encoding as input (self-terminating input)?
enc(Paradox)

while x not 0 do;
end;
enc(Paradox)

while x not 0 do;
end;

Proof: Step 4

- What happens when we actually run Paradox?

while x not 0 do;
end;
enc(Paradox)

while x not 0 do;
end;

Proof: Step 4

- What happens when we actually run Paradox?
enc(Paradox)

while x not 0 do;
end;
enc(Paradox)

end;

NP-Completeness

- Recall our time complexity analysis?
- Define a measure of how many steps it takes for an algorithm to complete based on the size of its input
- $\mathrm{O}(\mathrm{f}(\mathrm{n}))$ means that a program's time step complexity is dominated by the function $f(n)$
- where n is the input size

Complexity Classes

- $\mathrm{O}(\mathrm{c}):$ constant; program has a fixed number of steps regardless of input size
- $\mathrm{O}(\log (\mathrm{n})):$ number steps is dominated by a logarithmic growth in terms of the size of input
- $O(n)$: dominated by linear in terms of n
- $\mathrm{O}(\mathrm{n} \log (\mathrm{n}))$: dominated by nlogn term
- $\mathrm{O}\left(\mathrm{n}^{\mathrm{c}}\right)$: dominated by polynomial in terms of n
- $\mathrm{O}\left(\mathrm{c}^{\mathrm{n}}\right)$: dominated by exponential in terms of n

Complexity Classes

Tractability

- Generally we consider algorithms that can executed in Polynomial time or better to be tractable
- These grow slowly enough that we can use them on large problems and computer speed will increase until its feasible
- Exists in complexity class P
- We claim that algorithms that are not bounded by a polynomial term as intractable
- these grow way to fast to be practical on any large problem

Traveling Salesman (TSP)

- Given a set of n cities each at a different point in space (geography)
- Salesman starts from a home city and must visit each city
 exactly once and return home
- Salesman has a budget and must find a path that is cheap enough
- short in number of miles

Determinism and Non-determinism

- An algorithm whose steps are fully defined is deterministic
- will always execute the same way regardless of executor
- This is the kind of algorithm in which we program computers
- random numbers are even deterministic in terms of analysis, but in practice appear random to us
- An algorithm whose steps are not fully defined is non-deterministic
- Different executors may execute certain steps differently

Algorithms for TSP

- Writing a deterministic algorithm for TSP requires an exponential number of steps
- A non-deterministic algorithm might only take a polynomial number of steps

Pick one of the possible paths, p Compute distance of p, d if $d<$ allowable milage then (declare success) else (declare failure)

Algorithms for Traveling Salesman

- Writing a deterministic algorithm for TSP requires an exponential number of steps
- A non-deterministic algorithm might only take a polynomial number of steps

Pick one of the possible paths, p
Compute distance of p, d if $d<$ allowable milage then (declare success) else (declare failure)

How is a good one picked?

NP Class

- A problem is in the class NP if it can be solved with a non-deterministic polynomial time algorithm
- Any polynomial deterministic algorithm is in NP, but not all NP problems may be in P
- we strongly believe they are not

NP-Hard

- Class of problems for which we have no known solution in P
- We can prove that a new problem is NP-Hard if we can show that being able to solve it in P would allow us to solve another NP-Hard problems (that are also NP-Complete) in P
- Transform problems into the settings of others
- An NP-hard problem is at least as hard as the hardest problems in NP

NP-Complete

- Class of problems that both exist in NP and are NP-Hard
- If we ever find a polynomial solution to a single NP-complete problem, then all NP-Complete problems can be solved in Polynomial time
- We strongly believe this cannot be done, but we have no proof
- Prove $\mathrm{P}=\mathrm{NP}$ or $\mathrm{P} \neq \mathrm{NP}$
- You'll be hugely famous, and if you prove the former, you'll have changed everything!

