General Info
-You may bring two 8.5x11" pages of notes (front and back) to the final.
-Answers are to be written on the exam. Scratch paper will be provided if needed and must be handed in with the exam.
-The exam is comprehensive, meaning that it covers material that was on the midterm as well as the new material since the midterm.
-If a topic is not specifically mentioned below, but is on the student question submissions discussion board (the last part of HW5), then the topic is still fair game. In other words, you should know everything listed here as well as what is on that discussion board.
Classes 1-3: Overall, Google
-Know what abstraction means in computer science
-Know how bar codes work (in general)
-Know how Google works (e.g. PageRank and link counting)
Classes 4-5: Bits Boolean Algebra, Huffman Codes
-Be able to convert between binary, hexadecimal, and decimal, (or any other number number base system for extra credit)
-Know what ASCII is (you do not have to memorize the number-letter translation table)
-Be able to create an optimal Huffman tree from a message
-Be able to create a Huffman encoding using a Huffman tree
-Be able to evaluate Boolean expressions using ANDs, ORs, NOTs, and XORS; you should be able to fill out and construct a truth table.
-Know the difference between lossy and lossless compression
-Be able to construct circuit diagrams
-Extra credit: Two’s complement
Classes 6, 8: Scratch
-You do NOT need to be able to do anything with Scratch on the exam, but you should understand programming concepts we used in Scratch
Classes 7, 9: Algorithms and Computer organization
-Know the definition of CPU, BUS, RAM/Main Storage, Secondary Storage
-Know the difference between random access memory and sequential access memory
-Know how the fetch-decode-execute cycle works
-Know what registers are and what the instruction register and program counter register are
-Be able to write pseudocode for a variety of procedures:
•be able to write procedures that are general to parameters
•be able to write procedures that involve conditions (if, if else, and else)
•be able to write procedures that involve loops
•be able to write procedures that have Boolean expressions (e.g., ifs or whiles with
ANDs and ORs in the expression)
-Be able to show the output of a procedure written in pseudocode
-Know what a binary search is, what its requirements are, and why it is superior to a sequential sort
Class 8: Algorithmic Efficiency
-Given an execution time, be able to specify what its complexity class is (constant, logarithmic, linear, linear-logarithmic, polynomial, exponential)
-Given an execution time, be able to give the big-O/big-theta bound; e.g., n^3 + 2 is just O(n^3)
-Be able to evaluate the complexity class of an algorithm described in pseudocode
Class 11: Operating Systems
-Know what an operating system’s main functions are
-Know the differences between the kernel and the shell
-Be able to show the execution order of job processes using LIFO, FIFO, and priority based queues
-Know what a deadlock is
-Know what virtual memory and paging is
-Know how the file system works and be able to show a file system tree if given the paths of various files
Class 12: Networks
-Know the types of networks (bus vs. star) and connection hardware like routers
-Know the difference between client-server and peer-to-peer
-Know how the DNS system works and how the various servers and queried in the DNS tree
Class 17: Data abstraction
-Know what a head and tail pointer are
-Know Stack and Queue modification terminology (e.g., push, pop, enqueue, dequeue)
-Be able to show how a Queue and Stack data structure change with the respective modification procedures
-Be able to write simple pseudocode using Stacks and Queues
-Be able to construct and search a binary search tree. (Extra credit for deletion)
-Know how a linked list works
Class 19: Databases
-Know what the layers of the databse are and their roles (user, application software, DMS, database)
-Know the relational database model
-Be able to show the results of Select, Project and Join operators and be able to write your own for some desired information
-Know what a lock is
-Know how a hash table works and its advantages and disadvantages compared to a binary search tree
Class 20-22: AI, game playing, multi-agent systems
-Know what the Turing test is
-Be able to show the node expansion order in state space search using either breadth-first or depth-first search
-Given the structure of a minimax tree, be able to show the values at each node
-Know the role of an evaluation function in a minimax tree
-Know what Prisoner's Dilemma is

-Know the differences between playing Prisoner's dilemma once or iterated for an unknown number of games
Class 23: Graphics
-Be able to expand a simple grammar and know how they related to structural modeling in graphics
In general,

-Know how the painters algorithm and z-buffer algorithm work
-Know how ray-tracing works
Class 24: Theory of computation
-Know what it means to be a computable function and why the halting problem is an example of an uncomputable function
-Know what a Turing machine is and its various components
-Be able to show the results of a simple Turing machine algorithms
-Know what it means for an algorithm to be in P, NP, and NP-complete
Class 25: Secure computing
-Know the types of malware and attacks and the differences between them
-Know the types of protections for these security threats and how they work
-Know the difference between glass-box testing and black-box testing
-Know the general procedure of the RSA encryption algorithm (you don't need to know the mathematics of it)
Class 26: Future of computing
-Know the general idea behind quantum computing (qubit)
-Know what self-configuring robots are
-Know what smart matter is
