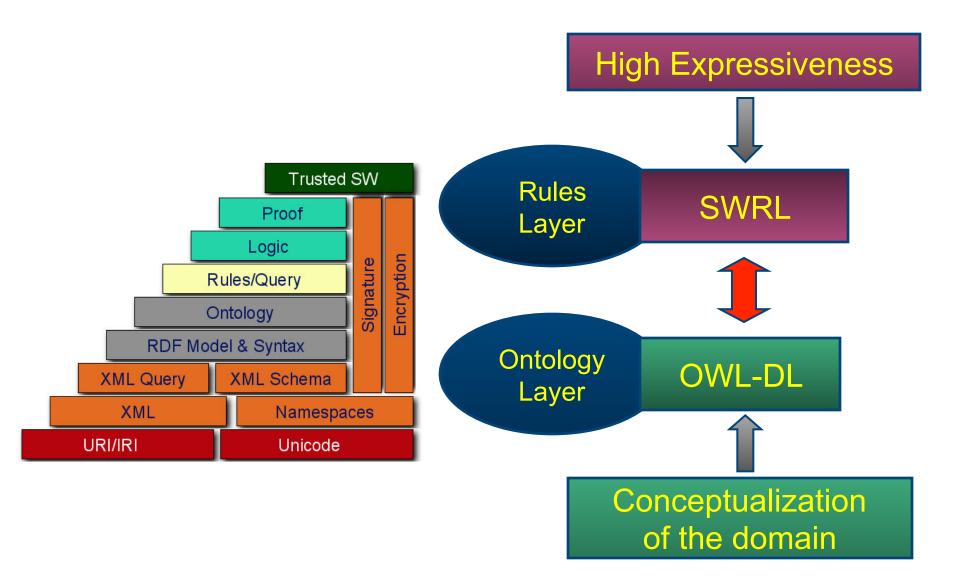
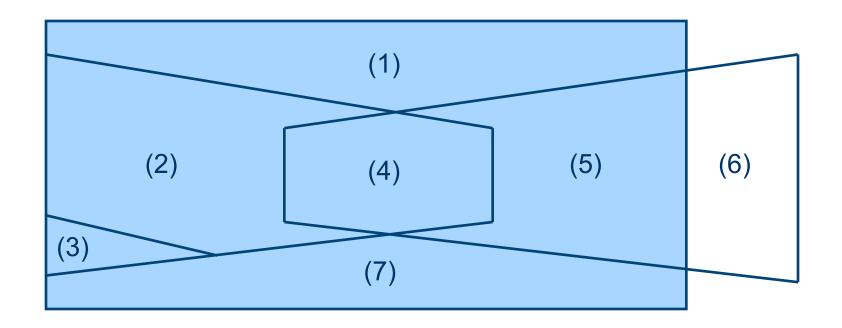
OWL, DL and Rules


Semantic Web and Logic

- The Semantic Web is grounded in logic
- But what logic?
 - OWL Full = Classical first order logic (FOL)
 - OWL-DL = Description logic
 - N3 rules ~= logic programming (LP) rules
 - SWRL ~= DL + LP
 - Other choices are possible, e.g., default logic,
 Markov logic, ...
- How do these fit together?
- What are the consequences


We need both structure and rules

- OWL's ontologies are based on Description Logics (and thus in FOL)
 - The Web is an open environment
 - Reusability / interoperability
 - An ontology is a model easy to understand
- Many rule systems based on logic programming
 - To achieve decidability, ontology languages don't offer the expressiveness we want. Rules do it well
 - Efficient reasoning support already exists
 - Rules are well-known in practice and often more intuitive

A common approach

LP and classical logic overlap

FOL: (All except (6)), (2)+(3)+(4): DLs

(4): Description Logic Programs (DLP), (3): Classical Negation

(4)+(5): Horn Logic Programs, (4)+(5)+(6): LP

(6): Non-monotonic features (like NAF, etc.) (7): ^head and, Vbody

Description Logics vs. Horn Logic

- Neither of them is a subset of the other
- It is impossible to assert that persons who study and live in the same city are "local students" in OWL
 - This can be done easily using rules:
 studies(X,Y), lives(X,Z), loc(Y,U), loc(Z,U) →
 localStudent(X)
- Rules cannot assert the information that a person is either a man or a woman
 - This information is easily expressed in OWL using disjoint union

Basic Difficulties

Classical Logic vs. Logic Programming

- Monotonic vs. Non-monotonic Features
 - Open-world vs. Closed-world assumption
 - Negation-as-failure vs. classical negation
- Non-ground entailment
- Strong negation vs. classical negation
- Equality
- Decidability

What's Horn clause logic

- Prolog and most 'logic'-oriented rule languages use <u>horn clause</u>logic
 - Defined by UCLA mathematician <u>Alfred Horn</u>
- Horn clauses are a subset of FOL where every sentence is a disjunction of literals (atoms) where at most one is positive
 - ~P V ~Q V ~R V S
 - ~P V ~Q V ~R
- Atoms are propositional variables (isRaining) or predicates (married(alice, ?x))

An alternate formulation

 Horn clauses can be re-written using the implication operator

$$\sim P \lor Q = P \rightarrow Q$$

 $\sim P \lor \sim Q \lor R = P \land Q \rightarrow R$
 $\sim P \lor \sim Q = P \land Q \rightarrow$

- What we end up with is ~ "pure prolog"
 - Single positive atom as the rule conclusion
 - Conjunction of positive atoms as the rule antecedents (conditions)
 - No not operator
 - Atoms can be predicates (e.g., mother(X,Y))

Where are the quantifiers?

- Quantifiers (forall, exists) are implicit
 - Variables in *rule head* (i.e., conclusion or consequent) are universally quantified
 - Variables only in rule body (i.e., condition or antecedent) are existentially quantified
- Example:
 - isParent(X) ← hasChild(X,Y)
 - forAll X: isParent(X) if Exisits Y: hasChild(X,Y)

We can relax this a bit

- Head can contain a conjunction of atoms
 - P ∧Q ← R is equivalent to P←R and Q←R
- Body can have disjunctions
 - P←RVQ is equivalent to P←R and P←Q
- But something are just not allowed:
 - No disjunction in head
 - No negation operator, i.e. NOT

Facts & rule conclusions are definite

- Definite means not a disjunction
- Facts are rule with the trivial true condition
- Consider these true facts:

```
PVQ
```

$$Q \rightarrow R$$

- What can you conclude?
- Can this be expressed in horn logic?

Facts & rule conclusions are definite

Consider these true facts where **not** is Prolog's "negation as failure" operator not(P) → Q, not(Q) → P
 P → R
 Q → R

- A horn clause reasoner is unable to prove that either P or Q is necessarily true or false
- And can not show that R must be true

Open- vs. closed-world assumption

- Logic Programming CWA
 - If KB $\not\models$ a, then KB = KB ∪ ¬a
- Classical Logic OWA
 - It keeps the world open.
 - KB:

Man ⊑ Person, Woman ⊑ Person

Bob ∈ Man, Mary ∈ Woman

Query: "find all individuals that are not women"

Non-ground entailment

- The LP-semantics is defined in terms of minimal Herbrand model, i.e. sets of ground facts
- Because of this, Horn clause reasoners can not derive rules, so that can not do general subsumption reasoning

Decidability

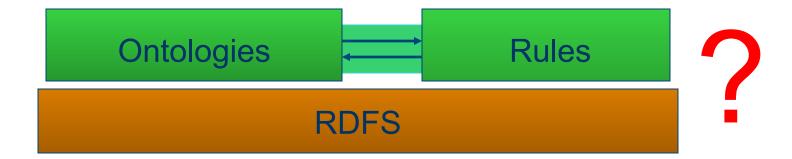
- The largest obstacle!
 - Tradeoff between expressiveness and decidability.
- Facing decidability issues from 2 different angles
 - In LP: Finiteness of the domain
 - In classical logic (and thus in DL): Combination of constructs

• Problem:

Combination of "simple" DLs and Horn Logic are undecidable. (Levy & Rousset, 1998)

Rules + Ontologies

- Still a challenging task!
- A number of different approaches exists:
 SWRL, DLP (Grosof), dl-programs (Eiter),
 DL-safe rules, Conceptual Logic
 Programs (CLP), AL-Log, DL+log
- Two main strategies:
 - Tight Semantic Integration (Homogeneous Approaches)
 - Strict Semantic Separation (Hybrid Approaches)


Homogeneous Approach

- Interaction with tight semantic integration
- Both ontologies and rules are embedding in a common logical language
- No distinction between rule predicates and ontology predicates
- Rules may be used for defining classes and properties of the ontology
- Example: SWRL, DLP

Hybrid Approach

- Integration with strict semantic separation between the two layers
- Ontology used to conceptualize the domain
- Rules can't define ontology classes and properties, but some application-specific relations
- Communication via a "safe interface"
- Example: answer set programming (ASP)

The Essence of DLP

- Simplest approach for combining DLs with Horn logic: their intersection
 - the Horn-definable part of OWL, or equivalently
 - the OWL-definable part of Horn logic
- The OWL 2 RL profile is the DLP part of OWL

Advantages of DLP

- Modeling: Freedom to use either OWL or rules
 - and their associated tools and methodologies
- Implementation: use either description logic reasoners or deductive rule systems
 - extra flexibility, interoperability with a variety of tools
- Expressivity: existing OWL ontologies frequently use few constructs outside DLP

RDFS and Horn Logic

Statement(a,P,b) P(a,b)

type(a,C) C(a)

C subClassOf D $C(X) \rightarrow D(X)$

P subPropertyOf Q $P(X,Y) \rightarrow Q(X,Y)$

domain(P,C) $P(X,Y) \rightarrow C(X)$

range(P,C) $P(X,Y) \rightarrow C(Y)$

OWL in Horn Logic

C sameClassAs D
$$C(X) \rightarrow D(X)$$

 $D(X) \rightarrow C(X)$

P samePropertyAs Q
$$P(X,Y) \rightarrow Q(X,Y)$$

 $Q(X,Y) \rightarrow P(X,Y)$

OWL in Horn Logic (2)

transitiveProperty(P)
$$P(X,Y), P(Y,Z) \rightarrow P(X,Z)$$

inverseProperty(P,Q)
$$Q(X,Y) \rightarrow P(Y,X)$$

$$P(X,Y) \rightarrow Q(Y,X)$$

functionalProperty(P) $P(X,Y), P(X,Z) \rightarrow Y=Z$

OWL in Horn Logic (3)

$$-C1(X), C2(X) \rightarrow D(X)$$

C subClassOf (D1 ∩ D2)

- $-C(X) \rightarrow D1(X)$
- $-C(X) \rightarrow D2(X)$

OWL in Horn Logic (4)

(C1∪ C2) subClassOf D

- $-C1(X) \rightarrow D(X)$
- $-C2(X) \rightarrow D(X)$

C subClassOf (D1 ∪ D2)

- Translation not possible!
- $-C \rightarrow D1 \text{ or } D2$

OWL in Horn Logic (5)

C subClassOf AllValuesFrom(P,D)

$$-C(X), P(X,Y) \rightarrow D(Y)$$

AllValuesFrom(P,D) subClassOf C

– Translation not possible!

OWL in Horn Logic (6)

C subClassOf SomeValuesFrom(P,D)

- Translation not possible!
- $-C(X) \rightarrow P(X,Y), D(Y)$

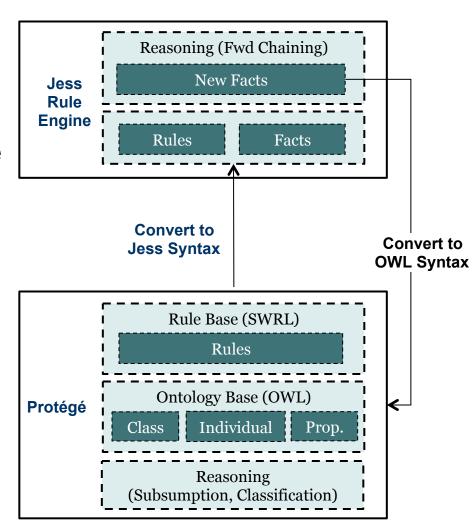
SomeValuesFrom(P,D) subClassOf C

 $-D(X), P(X,Y) \rightarrow C(Y)$

OWL in Horn Logic (7)

- MinCardinality cannot be translated due to existential quantification
- MaxCardinality 1 may be translated if equality is allowed
- Complement cannot be translated, in general

SWRL


- Semantic Web Rule Language
- SWRL is the union of DL and horn logic + many built-in functions (e.g., math)
- Submitted to the W3C in 2004, but failed to become a recommendation
 - W3C pursued a more general solution: RIF
- Problem: full SWRL specification leads to undecidability in reasoning
- SWRL is well specified and subsets are widely supported (e.g., in Pellet, HermiT)

SWRL

- OWL classes are unary predicates, properties are binary ones
 - Person(?p) $^{\circ}$ sibling(?p,?s) $^{\circ}$ Man(?s) \rightarrow brother(?p,?s)
- Bulit-ins can be booleans or do a computation and unify the result to a variable
 - swrlb:greaterThan(?age2, ?age1)
 - swrlb:subtract(?n1,?n2,?diff)
- There are also OWL axioms and data tests
 - differentFrom(?x, ?y), sameAs(?x, ?y), xsd:int(?x), [3, 4, 5](?x), ...

SWRL in Protege

- Protégé 4.x has minimal support for SWL
 You add/edit rules, some reasoners (Pellet, HermiT) use them
- Protégé 3.x has Jess, an internal rules engine
 Jess is a production rule system with a long ancestry
- And good tools for editing, managing and using rules
- See the SWRL tab

SWRL architecture for Protégé 3.x

The Essence of SWRL

- Combines OWL DL (and thus OWL Lite) with function-free Horn logic
- Thus it allows Horn-like rules to be combined with OWL DL ontologies

Rules in SWRL

B1, . . . , Bn \rightarrow A1, . . . , Am

A1, ..., Am, B1, ..., Bn have one of the forms:

- -C(x)
- -P(x,y)
- sameAs(x,y) differentFrom(x,y)

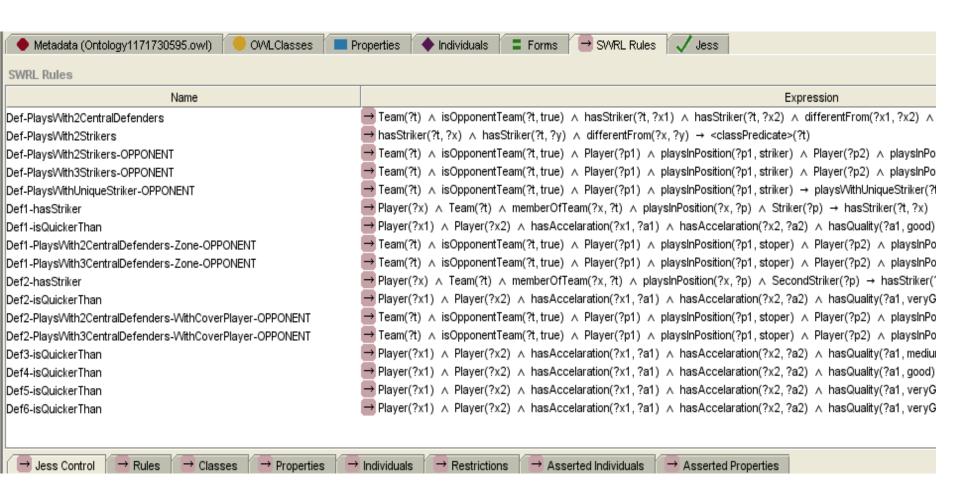
where C is an OWL description, P is an OWL property, and x,y are variables, OWL individuals or OWL data values.

Drawbacks of SWRL

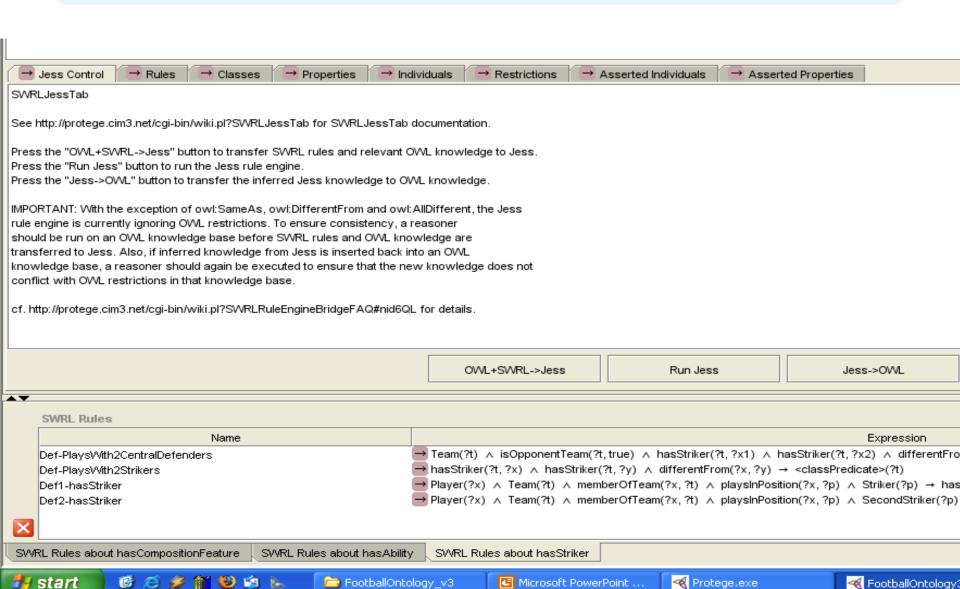
- Main source of complexity:
 arbitrary OWL expressions, such as restrictions, can appear in the head or body of a rule
- Adds significant expressive power to OWL, but causes undecidability
 there is no inference engine that draws exactly the same conclusions as the SWRL semantics

SWRL Sublanguages

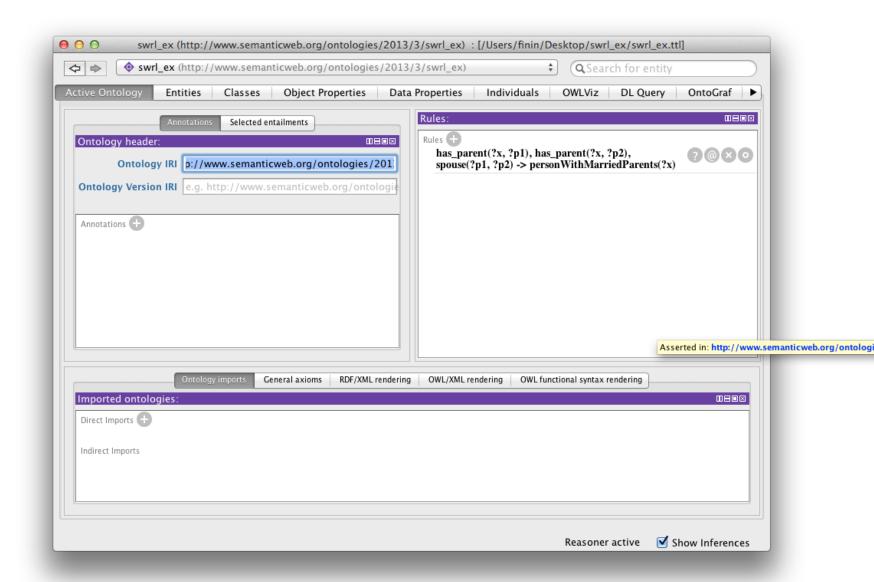
- SWRL adds the expressivity of DLs and function-free rules
- One challenge: identify sublanguages of SWRL with right balance between expressivity and computational viability
- A candidate OWL DL + DL-safe rules
 - every variable must appear in a nondescription logic atom in the rule body


DL-safe rules

- (all?) reasoners support only DL-safe rules
 - Rule variables bind only to known individuals
- Example (mixing syntaxes):


```
:Vehicle(?v) ^ :Motor(?m) ^ :hasMotor(?v,?m) -> :MotorVehicle(?v) 
:Car = :Vehicle and some hasMotor Motor 
:x a :Car
```

 The reasoner will not bind ?m to a motor since it is not a known individual


Protégé SWRL-Tab

Protégé SWRL-Tab

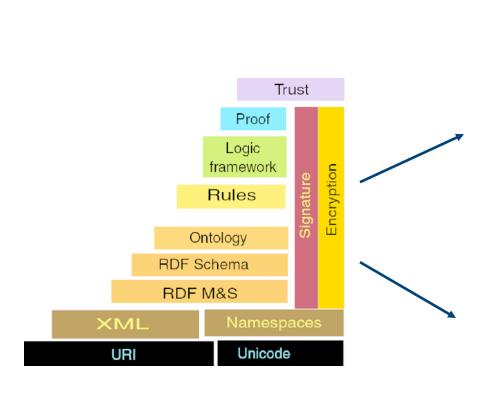
SWRL in Protégé 4.2

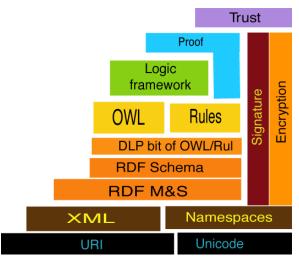
Non-monotonic rules

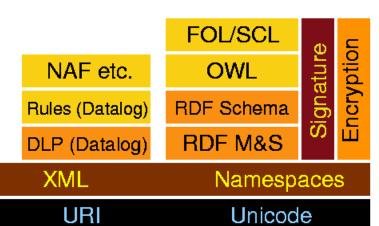
- Non-monotonic rules use an "unprovable" operator
- This can be used to implement default reasoning, e.g.,
 - assume P(X) is true for some X unless you can prove hat it is not
 - Assume that a bird can fly unless you know it can not

monotonic

```
canFly(X) :- bird (X)
bird(X) :- eagle(X)
bird(X) :- penguin(X)
eagle(sam)
penguin(tux)
```

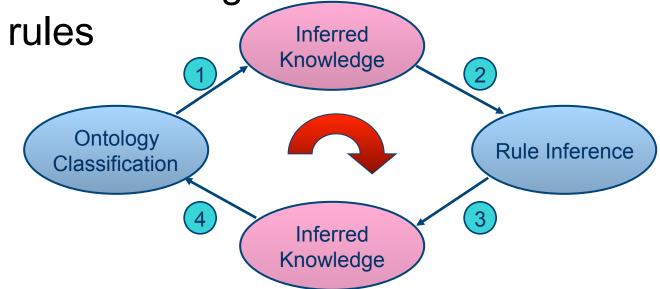

Non-monotonic


```
canFly(X) :- bird (X), \+ not(canFly(X))
bird(X) :- eagle(X)
bird(X) :- penguin(X)
not(canFly(X)) :- penguin(X)
eagle(sam)
penguin(tux)
```


Rule priorities

- This approach can be extended to implement systems where rules have priorities
- This seems to be intuitive to people used in many human systems
 - E.g., University policy overrules
 Department policy
 - The "Ten Commandments" can not be contravened

Two Semantic Webs?



Limitations

- The rule inference support not integrated with OWL classifier
 - New assertions by rules may violate existing restrictions in ontology

New inferred knowledge from classification may produce knowledge useful for rules

Limitations

- Existing solution: solve possible conflicts manually
- Ideal solution: a single module for both ontology classification and rule inference
- What if we want to combine nonmonotonic features with classical logic?
- Partial Solutions:
 - Answer set programming
 - Externally via appropriate rule engines

Summary

- Horn logic is a subset of predicate logic that allows efficient reasoning, orthogonal to description logics
- Horn logic is the basis of monotonic rules
- DLP and SWRL are two important ways of combining OWL with Horn rules.
 - DLP is essentially the intersection of OWL and Horn logic
 - SWRL is a much richer language

Summary (2)

- Nonmonotonic rules are useful in situations where the available information is incomplete
- They are rules that may be overridden by contrary evidence
- Priorities are sometimes used to resolve some conflicts between rules
- Representation XML-like languages is straightforward